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ABSTRACT

Time series models with autoregressive, moving average

and mixed autoregressive-moving average correlation struc-

ture and with positive-valued non-normal marginal distribu-

tions are considered. First,a flexible mixed model

.4 GLARMA(p,q) with Gamma marginals is investigated. The

correlation structure for several special cases is derived.

For the first-order autoregressive case, GLAR(l),the

conditional density of X given X is derived. This
nn

leads to the formation of a likelihood function and a

numerical approximation to and a simulation study of the

maximum likelihood method of parameter estimation. Multi-

variate extensions of the model are considered briefly.

Second, three methods for generating first-order

moving average sequences with Exponential marginals are

examined. These generalize the EMA(l) Expunential model.

Negative correlation using antithetic variables is investi-

gated in the moving average models.

A preliminary analysis of wind speed data obtained over

a 15 year period in the Gulf of Alaska is presented. A

model with four harmonic deterministic mean multiplying

random innovative factors modeled by a GLAR(l) process is

developed. Correlograms and periodograms are used to deter-

mine the model for the mean and the structure of the

innovation process.
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I. INTRODUCTION

The classical approach to time series analysis based on

linear, additive models with normally distributed, constant

variance residuals is probably best presented by the work of

Box and Jenkins [Ref. 1]. Although their work is widely ac-

cepted and used, it is not applicable to some important time

series. This is mainly because the Box-Jenkins approach is

based on an assumed normal distribution for the series in

question. However, the assumption of normality is not appro-

priate when the series is known to be non-negative. Such

series typically involve times between successive events in

event processes. Examples are easy to construct. Times be-

tween arrivals at a hospital emergency room, times between

breakdowns in a tank main drive assembly, and times between

detections of enemy armor vehicles are a sample of series of

this type. Because of the non-negative nature of the series,

the Box-Jenkins distributional assumptions and, hence, the

analysis techniques are inappropriate. There is, of course,

the possibility of data transformations but this is not appro-

priate with very skewed marginal distributions and it is, in

most cases, difficult to ascertain what the transformation

does to the correlation structure of the series.

Gaver and Lewis [Ref. 2] wrote the pioneering paper on

the subject of autoregressive processes with non-normal marginal

distributions. They presented the method for determining the

19



distribution of the innovative terms in the basic, linear,

additive, autoregressive equations (first-order stochastic

different equation)

Xn P + n (1.)

that was required to produce a given marginal distribution

for the {Xn } sequence. They presented results for { I se-

quences with Exponential, Gamma, and mixed Exponential

marginals. They also showed that this problem was the same

as that of determining the class of self-decomposable (Type

L) random variables (Feller, [Ref. 3], Loeve [Ref. 41) al-

though the connection between the solution to the self-decom-

posable problem and equation (I.1) was not explicit in the

literature.

The Gaver and Lewis paper was followed by other papers

which extended these results. Lawrance and Lewis [Ref. 5)

presented a first-order moving average process with Exponential

marginals. Jacobs and Lewis [Ref. 6) propounded a mixed auto-

regressive-moving average of order one, EARMA(l,l), and

Exponential marginals. This was extended to an arbitrary

order EARMA(p,q) process by Lawrance and Lewis [Ref. 7]. A
I further refinement of the first-order Exponential, auto-

regressive process (NEAR(l)) was presented by Lawrance and

Lewis [Ref. 8]. While this contained the previous EAR(l)

model, it did not suffer from the degeneracy inherent in (1.1).

Jacbos applied these models to closed cyclic queueing networks

20
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[Ref. 9] and Lewis and Shedler applied them to models of

computer processes [Ref. 10].

This paper extends the results of these researchers and

others in three areas. In Chapter II a mixed ARMA(p,q) model

with Gamma marginals proposed by Lewis [Ref. 11], the GLARMA(p,q)

model, is examined. The correlation structure is derived for

several values of p and q. Of particular note is the AR(l)

case (p = 1, q = 0), called GLAR(l), where the conditional

density of Xn given Xn_1 is derived. This leads to the deri-

vation of a likelihood function and a numerical technique to

evaluate and maximize the likelihood function with respect to

the model parameters. This provides a useful technique for

estimating model parameters. Using this numerical technique

a simulation study of the properties of maximum likelihood

estimators for the parameters of the model is given.

The correlation structure is derived for other models in

the GLARMA(p,q) family: the first-order moving average, the

second-order autoregressive, the first-order mixed autoregres-

sive-moving average and a bivariate first-order autoregressive

process. These different models, particularly the bivariate

extension, demonstrate the flexibility of the GLARMA(p,q)

model.

In Chapter III the first-order moving average process with

Exponential marginals of Lawrance and Lewis [Ref. 5] is ex-

tended to a two parameter model. This is done by utilizing

the NEAR(l) structure which combines two independent Exponen-

tial random variables into a random variable with Exponential

21
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distribution. A fairly complete set of characteristics of

this model are derived. In particular the correlation struc-

ture, the quantity P(Xn+1 > Xn) , the Laplace transform of

sums of Xn's , the Laplace transforms of the distribution of

counts, the (Bartlett) spectrum of counts, and the joint

Laplace-Stieltjes transforms of Xn and X n+ are addressed.

These characteristics are compared to those of other proc-

esses which produce marginally Exponential random variables.

In Chapter IV the models of Chapter II are used in a

preliminary data analysis of wind speed data. This repre-

sents the first effort to apply these models to a large, real

world data base. A model for simulating wind data is pre-

sented and parameter estimates for the data are derived using

the numerical approximation to the maximum likelihood presented

in Chapter II.
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II

II. MODELS WITH GAMMA MARGINALS

A. INTRODUCTION

There have been several schemes suggested for the modeling

of dependent random variables with Gamma marginals. The

Gamma autoregressive process of order one (GAR(l)) by Gaver

and Lewis [Ref. 2], the discrete autoregressive process of

order one (GDAR(1)) by Jacobs and Lewis [Ref. 12], the Gamma

Beta autoregressive process of order one (GBAR(l)) by Fishman

[Ref.-13] and Lawrance and Lewis [Ref. 14], and the Gamma auto-

regressive process of order one (GLAR(1)) by Lewis [Ref. 10].

There is also an attempt to use multivariate Gammas obtained

by the inverse probability integral transform in a time series

context by zhmeiser [Ref. 15].

The GAR(l) model generates an {X I series using the stan-n

dard first-order autoregression equation (first-order stochas-

tic difference equation)

Xn = Xn- + 6n' 0 < <. (II.A.)

The innovative factor, cn has Laplace-Stieltjes transformIn

of ( ) k and the Xn I random variables have marginal

Gamma distributions with shape parameter k and scale parameter

A. The marginal density function of the {X n  random variablen

is
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Xk k-i eAx

f (x;k,X) = f x(x;k, A) = - x e , (II.A.2)
n

A > 0, x > 0, k > 0.

The model tends to produce runs of decreasing value when inno-

vative term has successive realizations of value zero. The

GAR(l) is in this sense highly degenerate, even though it is

a true linear process. Ad hoc estimates of model parameters

are available which produce the exact p value if the series

is long enough [Ref. 2]. However, maximum likelihood esti-

mates have not been produced. This model is not extendable

to a moving average process.

The GDAR(l) produces an X n } sequence using the first-

order autoregressive equation with random coefficients.

Xn = VnXn . + (1-Vn)Gn' (II.A.3)

where (Vn, n = 1,2,.... is an iid sequence of binary random

variables with P(Vn = 1) = I-P(V n = 0) = p, tGn, n = 1,2,...,

is an iid Gamma sequence.

This sequence produces runs of constant value when suc-

cessive realizations for Vn produce value) 1. When Vn equals

zero, a new value is selected. Obviously, this model has

limited value in general applications and is even more degener-

ate than GAR(1) process.

The GBAR(l) is the most flexible model in that it contains

the GAR(1) and GLAR(1) models as special cases. It produces
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an {X n } sequence using

Xn = BnXn+1 + l n' (II.A.4)

where {Bn , n = 1,2,....I is an iid Beta (k-q,q) sequence. n

was shown by Lawrance and Lewis to be the sum of a Gamma

variable and the innovation process of the GAR(1) process

[Ref. 14]. Although flexible in the sense that it contains the

other models, it can not be extended to a moving average proc-

ess. In addition, conditional densities and, hence, maximum

likelihood estimates are not available. This is because the

innovation random variable for the GAR(l) process, while it

can be generated as a random sum of random variables, does not

have a known distribution function.

The most valuable and flexible model seems to be the

GLAR(l) which produces an X n } sequence using the stochastic

difference equation with random coefficients

Xn  B nXn-l + CnGn' (II.A.5)

where X n , n = 0,1,.. .} is a second-order stationary sequence

of Gamma random variables, IBn , n = 1,2 .... and {Cn , n = 1,2,...'
are iid Beta random variables, and {Gn } is an iid sequence of

Gamma random variables. This model is extendable as an auto-

regressive process of arbitrary order and as a moving average

process of arbitrary order. These two forms can also be combined
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to form a mixed model, the so-called Gamma Lewis autoregressive-

moving average process of orders p and q (GLARMA(p,q)).

This chapter of the thesis examines some of the special

cases of the model. One case in particular, the AR(l) form,

is reasonably extensively examined. The correlation struc-

ture is developed. The conditional expectation and density

are derived. The latter is used as the basis of a numerical

approximation to the maximum likelihood method of parameter

estimation. Directional moments and the probability of Xn+ 1

being greater than Xn are derived. In a later Chapter of

this thesis, this model is used as a basis for analyzing wind

speed data.

The special case of the moving average of order one is

examined in some detail. The correlation structure is derived

* with some emphasis on exploring the restrictions on the range

of correlations that are possible. Directional moments and

an empirical examination of the probability that Xn+l is

greater than Xn are examined.

As a demonstration of the flexibility and extendability

.,of the model the mixed model of order one, the autoregressive

model of order two, and a bivariate model are introduced and

their correlation structures derived.

B. FIRST-ORDER AUTOREGRESSIVE BETA-GAMMA MODEL, GLAR(1)

1. Introduction

The first-order autoregressive Beta-Gamma model is a

special case of the GLARMA(p,q) model when q = 0 and p = 1.
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The autoregressive model generates an {X n } sequence using

Xn  = AnXn-i + BnGn ,  (II.B.l.1)

where {Xn, n = 0,1,.. .} is a second-order stationary sequence

of random variables with a Gamma(k,l) marginal distribution;

{An, n = 1,2,...} is an iid sequence of Beta(k-q,q) random

variables; {Bn, n = 1,2,...} is an iid sequence of Beta(q,k-q)

random variables; {'Gn , n = 0,i,... is an iid sequence of

Gamma (k,l) random variables; {A n, {B n}, and {G n } are inde-

pendent; 0 < q < k.

Choosing X0 = G0 makes the Xn } sequence stationary.

The Gamma random variables are parameterized by the shape

parameter and the mean, rather than the scale parameter. This

somewhat unusual parameterization has some advantages in

statistical work since Garnma(k, p) = a Gamma(k,l) [Ref. 73.

A Gamma(k,l) random variable has density

k k  k-i -kx
fG(x;k,l) F k ek, x > 0, k > 0 (II.B.I.2)

This is a special case of the more general density

kk kx( )
fU k-i

G 7(k) x

where ' = 1. Of course, since the scale parameter, shape
k

parameter and mean are related by the relation = -, the den-

sity can be specified by any two of the three parameters. The

27



typical parameterization in terms of the scale parameter, A,

is useful because G(k1,,) + G(k2 1X) = G(kl+k 2,X). This re-

lationship is not true when the parameterization is through

the shape parameter, k, and the mean, ;A.

A Beta(m,n) random variable has density

f (x;mn) = -(m+n) M-i (l-x) , (II.B.I.3)

B m)F(n)x

. 0 < x < 1, m > 0, n > 0.

For the Beta random variable to be properly defined

each of the parameters must be positive. Hence, when q = k,

(II.B.l.l), as defined above, is no longer appropriate since

each Beta random variable has a parameter that is identically

zero. In this case when q - k it is understood that the {A n

sequence is considered to be identically zero and the {B }

sequence one. Therefore, II.B.l.l. becomes simply Xn = Gn ,

and the {X sequence, like the -} sequence, is iid. A
nn

justification of this generation scheme for a Gamma process

as defined by II.B.l.l was provided by Lawrance and Lewis

[Ref. 14, pp.24].

In this section the correlation structures of the X n

sequence and that of the {iX } and {G n sequences are addressed.n n

Other characteristics of the sequence, such as conditional

expectation of Xn given Xn-l, directional monents, and

P(X n+"X n ) are considered. Of particular note is the deri-

vation of the conditional density of Xn given Xn I  This
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leads to the formulation of the likelihood function and a

computer program to generate maximum likelihood estimates

of parameter values. The numerical convergence properties

of the likelihood method are assessed in Section II.E.

2. Correlation Structure

The serial correlation of the {X n } series is easily

Y determined by a straightforward calculation. We have

X X A X 2_+B G

n nn- nn

XX 1  n An-1 + BnGnXn-1

Now Xi and G. are independent if j > i and Xi and A. are

independent if j > i. Using these facts along with the ilid

nature and independence of the JB n  and G n } sequences yields

the following expression when expectations are taken.

E(XnXn_) = E(An)E(X2_ I ) + E(Bn)E(Gn)E(Xn_)

- h-q klk+l) + (a) 1 1
k k2

2 2k +k-kq-q+k - k +k-q
k2  k2

Therefore,

COV(X,X ) kn n-l

and
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CORR(Xn ) = 1- k 0 < q <_ k. (II.B.2.1)

This is consistent with the fact that for q = k, iXn } is a

sequence of i.i.d. Gamma variates which implies that

CORR(XnXn_) = 0. This correlation is easly extended by an

induction argument to yield

CORR(X,Xn) = ( )m n > m > 0. (II.B.2.2)n n+m) k -(IB22

The two sequences {X n } and iG n } can be viewed as a

bivariate pair (X n,Gn) of Gamma(k,l) random variables.

Therefore, the correlation structure of these sequences may

be of interest. Proceeding as before

X = AnXn_1 +BnG n

nn n n-l n nnXnGn  AnXnIGn +BG 2

Taking expectations as before

E(XG) = E(A )E(X ) E(G) + E(B )E(G )

n n n- nn n
* E (XnGn) = .i + q. k(k+l) - k

k 1  kT kk 2

E(XGn) = (II.B.2.3)
k

Therefore

COV (Xn ,G n) -

and
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CORR (Xn, G) (II.B.2.4)

Whenq k this isl1since X = Gn n'

Pursuing the process one more step we determine

CORR(Xn tGn-1).

X A nX nI+ B nG,

X Gn- Ann n-i n -n -

Taking expectations as before and using II.B.2.3 and the second-

order stationarity of the (1X n sequence, we get

E( - ( )EG1 ) n- - + E(B n)E(G n)E(G 1 )

2 3
3 2k- 22

k 3

Therefore,

COV(XniGni =~ - (II.B.2.5)

and

CORR(X n iG n- k k~ ~~ (II.B.2.6)

II.B.2.3 through II.B.2.6 can be used in a simple induction

argument to yield the general result

CORR(X G = k k ,m = 0,1,...,n. (II.B.2.7)

When j is greater than i, X.i and G.i are independent. Hence,

CORR(X.,G. 0, > i.
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3. Conditional Expectation and Conditional Density

The conditional expectation of Xn given Xn_ 1 
= y is

trivially determined from the defining equation and the

moments of the Beta distribution as

E(Xn Xn- )= ( Zk)y + "l' (II.B.3.1)

I Recognizing as the correlation between Xn and Xn-l and

4 letting p be that correlation, II.B.3.1 can be written as

E(XnXn=y) =py + py + (l-p). (II.G.3.2)

Thus the regression is linear in y.

The conditional density of X given X can also be
n n-l

determined. It is easiest to start by deriving the condi-

tional distribution of Xn given Xn 1 = y.

P(Xn<x Xn_1 Y) P(Ay +BnG x) = P(BnG < x-AY)n~l~-ly)n )n n<- y

Now [Ref. 14] the product of a Beta(q,k-q) random variable and

a Gaxmma(k,l) random variable is a random variable with density

Gamma(q,k.). Hence, if we let D be a Gamma(q,k ) random

variable,

P(X_ <Xn=y) = P(D <x-AnY) (II.B.3.3)n-ln< ny

This can be written as a convolution if one is careful about

the upper limit of integration. Since D is Gazmna(q,k), it

is non-negative. Hence, P(Dn <x-AnY) is zero if x-Any is
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less than zero. Since A is a Beta random variable and,n
hence, bounded above by one, X-AnY can not be negative if

x > y. However, if y > x, then A must be restricted to lien

in the range (0,2). Taking this restriction into account
y

and writing the RHS of II.B.3.3 as a convolution

L
P(Xn < XIXnl=Y) = f fA(z)FD (x-yz)dz, (II.B.3.4)

0

and
i if x >y,

if x < y,

y

where fA(z) is the density of a Beta random variable as in

II.B.1.3, and FD is the distribution function of a Gamma

(q,-q) random variable.

Of course, to get the conditional density of Xn

given Xn_1 = y, we must take the derivative of II.B.3.4

with respect to x. Recognizing that the upper limit may

be a function of x and applying Leibneitz's Rule where

appropriate yields

L
f (x) = f fA(z) fD(x-yz)dy, (II.B.3.5)

and
S $1 if x > y,

t L=

if x < y,
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wheref X _ (x) is the conditional density of Xn given

Xn_ , fA(z) is the Beta density, and fD(x-yz) is the Gamma

(q ) density as in II.B.l.2. Writing this result in terms

of the densities involved we have

IL

(x L (k) (q k-q-l(l z)q-i kq (~zq kxy~
Ix = 0 r(x-q)F(qz F(q)"n Xn- 0

with the condition on L, as in II.B.3.5. And finally,

f X (x) = { (k)
n n-1  F(k-q) [F(q)]

L zk-q-i(lz) q-g(x-yz) q-le kYZdy,  (II.B.3.6)

0

and

( 1 if x>y,

L = i f-
x if x < y.
y

As a check on the derivation of the conditional density,

the conditional density and conditional expectation were calcu-

lated for values of k and q which produced simple integrands.

One of these cases was J-2, q = 1. Then k-q-l = 0 and

q-1 = 0. In these'parameter values II.B.3.6 reduces to

L 1 i f X > y,

f (x) = 2e 2x f e2YZdz L = 1Sn X n-1 0 /if x < y.
y

34



After integration,

-2x e 2y  1

fXnIXni (x) = -x(IB371 e1 if x <y.
y y

Sic thetw)i (II.B.3.7)

Since the two expressions in II.B.3.7 are non-negative, we

can insure that this is a density by verifying that its inte-

gral is one.

fy  e- 2 x 2xe 2 2y  1
fx de__dx -dx ++f Y e] dx

ye y y -2d

- !7 ax-_f! e-2 Xdx + e--

Y 0 Y 0 y

e-2y 1 1 e2
2y 22y y y

2 1,

as required. We can also take the conditional expectation to

see if it equals Z + 1 as required by II.B.3.1. Thus,
2 2

( Y -2x 2x 2 y
xf W = I - ax + f xe dx-Xn- 0 Y Y y y y
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f xf (x)dx f xdx - -f xe-2xdx +  e-2Xdx0 XXl 0 Y Yo y

e-2y -2y
2 + + ey -1 + 1f + 1y4 y

2

i = +~ ,

as required.

Using k = 3 and q = 1 produces a density of

12e- X (eay 3y
y-3x 1 3ye +L)) if x>y,

y 3y 3yJ

fXnX (x) = (II .B.3.8)
y2ny-- 1 -3- if x <y.

y 3

This density is non-negative and integrates to one. It also

produces a conditional expectation of + I as required by
3 3

II.B.3.1. These results are also of use in validating the

results obtained from numerical integrations of II.B.3.6 in

estimation applications.

This conditional density can be used to form the joint

density of XIX 2 , X..,X and, hence, the likelihood function

of the data. This subject will be addressed in the following

section.

4. Maximum Likelihood Estimation

Once the conditional density of Xn given Xn_ 1 and the

marginal density of X1 are known, it is possible to evaluate
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I

the joint density of XIX 2 ,...,X n. Since the first-order

autoregressive process is Markovian, as can be seen directly

from the defining equation II.B.I.l, the following equation

is valid:

f(xjIx jxlx_2,...x) = f(x.Ix.jl), n > j > 2 (II.B.4.1)

Applying II.B.4.1 n-i times to the joint density of X n,Xn-1

...,X1 produces

f(xnxnl,...,x) = fl(XnlXnl)fl(xnllXn_ 2 )--fl(x 2 x)f 2 (xI)

(II.B.4.2)

where f is the joint density of Xn,...,X 1 ; f1 is the condi-

tional density of X. given Xj_I; and f2 is the marginal den-

sity of the iX n } sequence.

Viewing the joint density as the likelihood function,

letting L be the likelihood function, and taking natural

logarithms of each side of II.B.4.2 produces

n-i
in L = nf 2 (xl) + I In fl,(Xi+llXi) (II.B.4.3)

122

Recall that in Section II.B.3 the conditional density

was determined to be
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f(xiy) r (k) qekx L kq-1 zq-l(x_yz)q-lekY
r(k-q) U(q) 12 0

2. if x y(II.B.4.4)

if x < y.

y

For a given set of data the likelihood can be viewed as a

function of the parameters k and q. Let

n-i
G(k,q) in f2(xl + in fl (x iXi) (II.B.4.5)

i1

Assume for the moment that a procedure has been established

to evaluate G(k,q) given k,q (0 < q < k) and the data. Consider

the problem of constructing a program to determine the values

of k and q which maximize G(k,q). An outline of the program

can be constructed as follows:

i1. Read the initial values for k and q.

Read the data.

2. Determine a direction of search. Use the following

difference equations to approximate derivatives.

G(k,q) G(k+Ak,g) - G(k,q) (II.B.4.6)

-qG(k,+q) - G(k,g) (II.B.4.7)
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i

Le k kG(k,q+Ag) - G~k,q) ;
Let Dk i = G(k+Ak,g) - G(k,q) and Dqi = Gq

for the ith iteration. If we define 7G Dk i , then 7G
1 ~Dqi

approximates the gradient of G at the current k,q values.

For i = 1, let the direction of search, dl, be VG. For

i > 1, define the direction of search, dk, to be

d k  = 7G. + k d (II.B.4.8)

1~ T

where a is T , the ratio of the length of the
~k-l 7GT_7

present and preceding gradients. Formula II.B.4.8 is the key

equation in implementing the Fletcher-Reeves Conjugate Gradi-

ent Algorithm. Once dk has been selected, normalize its I

length to one.
-3

3. Let the initial step length, SL, be 10 and let N = 1.

Compute the trial values of k and q, Tk and TQ, using

Tk = k + SL * Dki,

(II .B.4.9)

Tq = a + SL Dqi

If G(Tk,T1 ) > G(k,q), let SL = 2 * SL, otherwise go to 4.

If N = 10; k = Tk, g = Tq, go to 2. (No step larger than

10 -3
2 * 10 zl.0 is allowed.) If n < 10; N = N+l, go to 3.

4. If N > 1 ( at least one step produced an increase),

use a golden section search between Tk,Tq for step N-2 and
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Tk and Tq for step N to determine the maximum function

value and the k and q values, kMAX and qMAX, which produced

it. Here k = kMAX, q = qMAX, go to 2.

If N = 1, go to 5.

5. Since the initial step along the indicated direction

produced a decrease in the function value, check to see if

you are at a local maximum. Determine the function value

at points at 300 intervals on the circumference of circles

with radii of l0 - , 102, 101 (0 is parallel to the q axis).

If the maximum of these test values is greater than the pre-

sent value, set k and q to the values which produced the

maximum value, set the present function value to the maxi-

mum, set i = 1 and go to 2. Otherwise terminate.

The program above assumed that, given q, k and the

data, the value of the likelihood could be calculated. One

difficulty in performing the calculation is that the integrand

of the conditional density may contain singularities. As a

precondition to using an IMSL routine to evaluate the inte-

gral, these potential singularities must be removed. The

technique employed requires that the coefficient of the term

that goesto infinity as one of the limits of integration is

approached is added and subtracted. The part that is added

is then integrated separately and added to the part that is

evaluated by the IMSL routine.

To procede with this technique we first split the

integral into two parts. Thus, ignoring the part of II.B.4.4
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outside the integral, we have

fLz k-q(l-z)q-i (x-yz) q-le kYZdz = zL/2 zk-q-i(l-z)q-i

0 0

(x-yz)q- 1kYZdz + fL zk-q-l(l-z)q-l(x-Yz)q-lekYZdz
L/2

(II.B.4.l0)

I-

In the first part of the RHS of II.B.4.10 the term zkq - could

tend to infinity as z tends to zero if k-q-l < 0. If we set

z equal to zero in the remainder of the integrand we get

(l-z) q-(x-yz) q-e kYZ = Xq -l . Adding and subtacting this
z=0

term times the term that contains the singularity, we have

f L/2 zk-q-l-z ) q lekYZdz

0

= L/ zk-q- (l-z) q-1 (x-yz) q-1 e kYZ-x q-lz k-q-l +xq-1 Izk-q- ldz

L/2 k-q-l q-1 q-1 kyz q- q q-1 fLqk-q-
f z [(l-z) (x-yz) e -x ]dz +x z ldz

0 0

Thus,

L/2 k-q-1 q -1 ( q- kyz

0

SL/ 2 z _z)q-(x_yz) q-lekYZ-x ] dz+x q-1 2k-q

(II.B.4.11)
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Recall that since q < k, k-q > 0 and the second integral on

the RHS can, in fact, be integrated as shown. Now the inte-

gral on the RHS can be evaluated by IMSL routine DCADRE and

the second part of the RHS can be easily computed.

Applying this technique to the second half of the

integral, recalling that the case where L = 1 and L Y
y

must be considered separately produces

f1 z k-q- (l_z) q-l(x_yz)q qle kYZd z

1/2

f [ zk-q-i(x-yz) q-le kYZ-(x-y)q- lek] (1-z) q-ldz (II.B.4.12)

1/2

q(/ 2 )+ (xy -ek q

and

f z (-z)(x-yz)q-lekYZdz

x/2y

x/ 2y
q

+ (x) k-q-i (2 q-lekX yq (II.B.4.13)

y y y

Since q > 0, the second terms in the two previous expressions

are properly integrated.
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Two points should be noted. First, if k-q-1 > 0 or

*if q-l > 0, then these steps are not required. But whether

they are required or not, they are always accurate. Since

* the exact path of the search algorithm is unknown at the

start, these expressions are used throughout to insure accu-

rate calculations regardless of the k and q values encoun-

tered. Second, if x = y, two parts of the integrand simul-

taneously tend to infinity and this procedure breaks down.

*1 This does not pose a problem for continuous data since the

probability of this occurring is zero. However, if discrete

values are used or if the data is truncated because of limits

on the accuracy of the measuring device, then the data may

have to be preprocessed to insure that successive values are

not equal by adding a small increment to one of the values.

* When the program was written, its accuracy was veri-

fied by three checkes. The case k = q implies independence

* in the basic model since as q tends to k the probability that

A nequals zero tends to one and the probability that Bn

equals one tends to one. Hence, in the limit X= Gn and G

is an iid sequence. The logarithm of the likelihood function

for independence was calculated and compared to the program

- . results for several values of k and q where k = q. The two

calculations were equal within machine roundoff and compu-

tational accuracy. The special cases of k = 2, q = 1 and

k = 3, q =1 discussed in II.B.3 were also computed. The

logarithm of the likelihood function was computed using each
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of the conditional densities derived in II.B.3.7 and II.B.3.8.

When the results of these calculations were compared to the

. program results with the specified k and q values, the re-

sults were equal within calculation and roundoff accuracy.

The results of the tests of this program when used

with simulated data with known parameter values are presented

in Section II.E.

Note that there are natural moment estimators for the

three parameters, k and q and . in this model. These follow

from the fact that

(i = CORR(XXn) 1 -
n n+l k'

2

2 VarX n ) Var(X) x =C (X) = 2 2 - k
[E(X n ) ] [E(X)] u

Thus we use for moment estimations

L- = x (II.B.4.14)

q= (1-()k (II.B.4.15)

-2
k = (x) (II .B.4. 16)

s
x

These moment estimations will be compared to maximum likeli-

hood estimations in the case where i = 1 in Section II.E.
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5. Directional Moments

Unlike processes with normal marginals, non-normal

processes are not completely determined by their correlation

structure. Directional moments not only demonstrate this

difference, but also help to differentiate processes with

similar correlation structure and identical marginal distri-

*: butions. They can also be used to help determine parameter

values. In addition, they may also be viewed as another

way of characterizing the joint distribution of the process.

With

Xn = An-l + BnG n,

with all random variables defined as in II.B.l.1, we first

address E(XnX2_I . We have

X = AnXn_ 1 + BnGn

n nn-l n n nnn
XnX2 _l = AnX3 _ +BnGX 2 _ •

Taking expectations, recalling G. and X. are independent if
i J

i > j, {B } and {G } are independent, and A. and Xj aren n ij

independent if i > j. Then

3 2
E(XnX2n 1 ) = E(An)E(X 3 l ) + E(Bn)E(Gn)E(Xn-l )

k-q k(k+l) (k+2) + . 1 k(k+l)
k k3  k k2

45



E(Xn _ ) -k(k+i) __

E n3 [ - (k+2) + q]
nnlk 3 k

E (XX 2 ) k (k+l) k2 +2 (k-q) (II. B. 5. 1)nn-l k3  k

Since

X 2 = A2X2 22
n n n-i n n n n-i BG

2 A2X3 2 2A2B2G X 2
X2Xni n n-1+ +1nnn n- 1 BGnXn-l

Taking expectations as before

E(XnX) = E(A2 )E(X 3_) + 2E(A )E(B )E(G )E(X2_
n -in n n n-

+ 2 2
+ E(B )E(G )E(Xn I )

= (k-q) (k-q+l) k(k+l) (k+2) + 2(k-g) .-q-ik(k+l)
k(k+l) k3  k k k2

+ q(q+l) k(k+l) .1

k (k-l) k2

After simplification we get

E(X2XI) (k-g)(k+l) (k+2) + qk(k+l) (II.B.5.2)k3 3

k k

Note that these two directional moments are different,

indicating that the process is not time reversible.
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6. P (Xn+ Xn

Another characterization of the joint distributicn

and the time directionality of the process is given by

P(Xn+ > X n). There is a simple analytical solution for

P(X > Xn) in the GLAR(l) process. Consider,

P(Xn+1 >X) = P(An+IXn + Bn+iGn+ 1 >X n )

- P(B n+lGn+ > [1-A n+IX n) (II.B.6.1)

Recall that B n+ is Beta(q,k-q) and A n+ is Beta(k-q,q).

Hence, [1-A n+I is Beta(q,k-q). Since G n+ and Xn are inde-

pendent and have the same marginal distribution and An l and

B n+ are independent, each side of the inequality in II.B.6.1

has the same distribution and the random variables are inde-

pendent. Hence

P(X > X n 0.50.

This is a strong property of the process. While the

process, as seen by the directional moments, is not time

reversible, the fact that P(X n+1 > X) = 0.50 means that

sample paths will have as many "runs up" as "runs down".

Sample paths are given in Figures II.B.6.1 and II.B.6.2.

An additional point of interest occurs when k = 1

and the process has exponential marginal distributions.
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Another exponential first-order autoregressive process in

which P(X+ 1 > Xn) 0.50 is the PREAR(l) process. This is

a special case of the two parameter NEAR(l) exponential

process of Lawrance and Lewis [Ref. 8 1 in which the two

parameters a and are related by a = --L. The two

exponential processes are very similar in sa.mple path proper-

ties. However, the GLAR(l) process has a smoother joint

distribution. In fact, the likelihood for the PREAR(l)

process is discontinuous, making it difficult to get maximum

likelihood estimators.

C. FIRST-ORDER MOVING AVERAGE BETA-GAMMA MODEL, GLMA(l)

1. Introduction

Another special case of the GLARMA(p,q) model is the

first-order moving average model where p = 0 and a = 1. This

arises naturally from the key result that an {X } sequence

can be formed by the random sum of two independent Gamma ran-

dom variables. In the first-order autoregressive case of

Section II.B, the generation scheme was given by equation

II.B.l.l and is repeated here

X n  = A X n _ + B G n . IXn An Xn-l +Bn Gn'

The distribution of the {X ni sequence depends on the inde-

pendence and distribution characteristics of Xn- and Gn.

It should be noted, however, that any two independent random

variables with the required Gamma distribution could be
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substituted for Xn_ and Gn without changing the distribution

of Xn . In particular if we substitute Gn for Xn_ 1 and Gn_

for Gn , we produce the first-order moving average process

which generates the {X n } sequence using

Xn = AnG n + BnGn_1 , (II.C.I.1)

where {Xn, n = 1,2,...l is a second-order stationary sequence

of random variables with marginal Gamma(k,l) distributions,

{An, n = 1,2,...} is an iid sequence of Beta (k-q,q) random

variables; {Bn, n = 1,2,...} is an iid sequence of Beta (q,k-q)

random variables; {n n = 0,,....} is an iid sequence of

Gamma(k,l) random variables; {An 1, (B n, and {Gn I are inde-

pendent; 0 < q < k. The Gamma random variables are para-

meterized as in II.B.l with density as in II.B.1.2. The

Beta random variables have density as in II.B.1.3.

In this section we will address the correlation struc-

ture of the {Xn I sequences and that of the {X n, G n } se-

quences, theoretical ranges for possible correlations for

the iXn sequences, directional moments, and the P(Xn+ > Xn)

2. Correlation Structure

Using II.C.l.1 to define Xn and Xnl we have

XX 1  = (AnGn + BnG) (An 1 Gn 1 + BnG 2 )

= AA GG +AB GG +A BnG +BnB GnGn 2n n-i n n-i n n-1 n n-2 n-I n n-1 n
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Using the iid nature and independence of {An}, {Bn } , and
n

{Gn} and taking expectations

E(XnXnI) E(A n )E(An_ 1 )E(G n)E(Gn 1 )+E(A n )E(B nl)E(G n )E(Gn_ 2 )

+ E(A 2)E(B)E(G2

k 2 (a) + (KA) (_) (k I E (_ ) EG 2 )
+ k k k k k2k!k

- + (II.C.2.l)

Therefore,

COV(X~I~ k=q (~(Si) (1)

and

CORR(XnXn) = (_)(_) . (II.C.2.2)

A simple calculation will show that for lags greater

than one the correlation is zero. So equation II.C.2.2 plus

the knowledge that greater lags are zero is sufficient to

specify the correlation structure of the X } sequence.
n

One might note at this juncture that the correlation

of the {X sequence is constrained to lie in the intervaln
1(0,). The reason for this constraint and a method for re-

laxing it will be discussed later. It is also worthy of
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note that the tXn} sequence is stationary and has the same

marginal distribution as the {G n } sequence, if X0 = GO .

As indicated in II.B.2 the {X n } and 1Gn } sequences

can be considered to be a bivariate, correlated Gamma(k,l)

process. As such, the correlation structure of this bivari-

ate Gamma may be of interest. Consequently, we first develop

* - the correlation of X and G in the standard fashion.

n n

Xn A nGn + BnGn_

XG = A G2 +B G Gn n n n n n n-l

Taking expectations as before,

E(XnG) = E(An )E(G2 ) + E(Bn)E(Gn)E(Gn)

k-q (k.[k+l]) +
k k 2  k

k2 + k- a
k 
2

Therefore,

COV(X ~G) =n k

k-

and
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CORR(X ,G )=(II .C.2.3)n n k

Now consider the correlation of Xnand G ni* We have

X n = A nG n+ B nG

X G A AGG + BG 2

n n-l n nn-l n n-l*

Expectations in the standard fashion produce

E(X G )=E(A )E(G )E(G + +E(B )E 2_
n n-i n n n-i n E(ni)

+ a*~ (k[k+.I)
k k k

2

Hence,

COV(X~ ,cG q

And finally

CORR(Xn ,G~ 1  (II .C.2.4)

A simple calculation convinces one that the correlation for

lags greater than one is zero. In addition, it is clear

that CORR(X n ~Gn+m) 0 for m = 1,2,.... Hence, II.C.2.3 and
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II.C.2.4 are sufficient to specify the correlation structure
of the {Xn I and {Gn I sequences.

It has been noted before that the range of correla-

tions for the first-order moving average process generated

by the Beta-Gamma method of II.C.l.l is constrained to lie

in the interval from zero to one-quarter. There may be other

random linear combinations of Gamma random variables which

give a moving average process with Gamma marginals and a

greater range of positive correlations. Thus we now examine

a more general hypothetical generation process to prove that

any random, linear combination of two independent Gamma random

variables which generates a sequence with the same first two

moments as those Gamma variables has a correlation that lies

in this same interval. In fact, this proof only requires

that the dependent random variable have the same first two

marginal moments as the generating Gamma variables.

THEOREM:

If the {X n } sequence is generated by

X = AG + BnG (II.C.2.5)

n n n n n-l'

where iX n } is a second-order stationary, non-negative sequence

of random variables with the same first two moments as the

{G n } sequence; {A n and {B n } are iid sequences of random

variables; {G n  is an iid sequence of Gamma(k,1) random
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variables; and {A n1, {B n, and {G n are independent, then

0 < CORR(X n X -) < 0.25.

Proof: Since {A n , {B n , and {G n are independent and {X n

is non-negative, {A nI and {B nI must be non-negative. Hence

E(A) > 0 and E(B) > 0.

Taking expectations of II.C.2.5, we have

E(X) E(A )E(G ) + E(Bn)E(Gni

1=E(A) + E(B) (II .C.2.6)

Hence, 0 < E(A) < 1 and 0 < E(B) < 1.

Computing the serial correlation of fX n yields

Then

EXX =( (A(n + nl)(GnEi + ( G)B(G)Gn - - n- n-n-2 l n -

+ E(A n-i)E(B n)E(G n_ )+E(B )E(B l)E(G 1)E(G n 2 )

=1 +E(AE(B
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Since E(X n ) = E(G n ) = 1,

COV(X nX ) = E(A)E(B)(j)

And since VAR(X )= VAR(Gn)n

CORR(X n,X ) = E(A)E(B)

Using II.C.2.6 and its consequences, we have

1

0 < CORR(XnXn l) = E(A) [l- E(A)] < -. (II.C.2.7)

So, in general, if {X n } is second-order stationary with the

same first two moments as {G n}, the serial correlation of

{X n } is bounded below by zero and above by one-fourth. Q.E.D.

This constraint on the correlation appears to be

restrictive since, in the classical case, when two normally

distributed random variables are added to produce a normal se-

quence, the range of correlations is - The two situa-

tions, however, are not comparable. It is clear upon reflection

[that the constraints imposed on the {Xn } sequence in the pre-

vious theorem are more severe than those imposed upon the

classical normal case. In the above theorem we required that

both the mean and variance of the {Xn I sequence equal that of

the innovative sequence. However, in the classical normal

case (where zero mean normals are used as innovative factors)
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only the mean of the generated sequence is equal to the mean

of the innovative sequence. The variances are not equal.

We now examine the case where the generated sequence is re-

quired to have the same mean as the innovative sequence, but

is free to have a different variance. (This is the case

with the usual constant coefficient, linear additive MA(l)

scheme.)

THEOREM

If the non-negative {Xn } sequence is generated by

II.C.2.5 and all variables are defined as for that equation

except that JXn I is only constrained to have the same first

moment as {Gn }, then 0 < CORR(XnX nl < 0.5.

Proof: Taking expectations of II.C.2.5 with the new circum-

stances produces

E(X) = [E(A) + E(B)]E(G)

1 = E(A) + E(B)

and 0 < E(A) < 1, 0 < E(B) < 1 by following reasoning identi-

cal to that above. Calculation to determine the serial corre-

lation can initially proceed as usual.

XnXnl = (AnGn + BnGn- l) (A n-Gn-I + B nlGn-2)

E(XnXn I  = 1 + E(A)E(B) (1)
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1o

COV(X,X) = E(A) E(B) (1)

To this point all calculations and reasoning have been the

same as that which produced II.C.2.7. However, since {X }

is not constrained to have the same second moment as {G n }

the most explicit result obtainable is

E (A) E (B)()

CORR(Xn'Xn- = VAR(X) k (II.C.2.8)

where VAR(X) is, of course, a function of VAR(A), VAR(B),

and VAR(G). Since it is obvious that the smaller the value

for VAR(X), the greater the serial correlation for IX n},

let us reduce VAR(X) to its smallest values. Since the dis-

tribution of {G n } has been specified, its variance is fixed.

Let P(An = a) = 1 and P(Bn =b) = 1. Then trivially E(A) = a,

E(B) = b and VAR(X) = (a2 +b 2) Under these conditions

II.C.2.8 becomes

-ab

CORR(Xn, Xn_ 1  =
a +b

[If we further specify that a =b, then CORR(X~ n'X n-) achieves

its maximum of 1/2. Q.E.D.

The situation developed above is comparable to the

classical situation where the innovative factors have distri-

bution, N(O,a2  Except for the degenerate case where one

coefficient is zero, the sequence generated by a linear com-

bination of innovative factors may have the same first moment
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.7-77__

as the innovative factors, but will have a different second

moment. So, under comparable conditions the random, linear

combination of Gamma(k,l) random variables can produce

positive correlations equal in magnitude to the positive

correlation produced by a classical normal process. The

distribution of the {X } under these circumstances is unknown.
n

If the distribution of the {X is constrained to

be Gamma(k,l) and the Beta-Gamma generation scheme is used

to generate the {Xn }, then the maximum correlation that can

be achieved is one-fourth.

3. Directional Moments

As mentioned in II.B.5 the directional moments of a

non-normal process are not necessarily equal and may provide

valuable information about a time series. First, consider

E(X 2Xn From II.C.l.l

X2  A2G 2 + 2AnBnGnG + B2G 2

n nn nnnn-l nn-I

and

Xn_ 1  = Anl Gn1 + Bn-iGn- 2

Therefore,

2 = 2 2 +2AA BGG 2  +A 23 2AB G2 G
XXnln n- n Gn- +2A n A n-i B n n n-in G n-i n n-i n n-2

+ 2A B B GG 2  G
n n n-I n n-l n-2Bn n-l n-I n-2
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Taking expectations as in II.C.2 yields

E(XX = (k-q) 2 (k-q+l) + 2(k-q) 2 (k+l) (k-q)q(q+l) (k+2)
nn k3  k3  4

+ (k-q) (k-q+l)q + 2(k-3) 2q2 q2(q+l)

k 3  k3  k k3

Upon simplification this produces

E(X2 Xn) (k-q)2  (k-q) q [2q (k+l) +k+2
3 n 3 n+] k k k

2
+ q 3 (2k-q+i1 (ii.c.3.1)
k

In an analogous fashion

XnX2_l = AnAn2_ GnG2 2_ + 2AnA nB nGGnG 2 + AnBi2GnG2

2 3222
+n-iB n Gn-i 2 AnilB BilGilGn-2 + B B lG lG n 2

Taking expectations we have

E(Xn ) = (k-q) (k-q+l) + 2(k-q) 2 (k-q)q(q+l)3 3q

n nl k3 3  k 3-

+ (k-q)(k-q+2)q(k+2) + 2(k-q)g 2 (k+l) + (q+l)

k4  k4  k3

which simplifies to
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E(X = 2_)2 (k+q+l) + q(q+l)(2k-q )

(n n) k 3k 3

+ (k-q)q(k+l) 2 (II.C.3.2)

4. Empirical P(X > X n )

No analytical procedure was found to determine

P(Xn+1 > Xn). Hence, a simple computer program was constructed

to evaluate this condition for a series of sixty-eight thou-

sand pairs of numbers generated by the Beta-Gamma scheme for

each of ten random number seeds. The answer obtained was

considered to be accurate within 0.001. The comparisons were

run for each of seventy-nine values of q, from 0.05 to 3.25

in increments of 0.05. All of the results of the comparisons

fell in the range 0.499 to 0.501. Fourteen of the values were

different from 0.500. No pattern was apparent in the devia-

tions from 0.500 and these deviations were considered to be

random fluctuations within the given margin for error. It

thus seems clear that P(Xn+i >X n ) for this process is like

the GLAR(l) process but no proof has been found.

D. OTHER CASES OF THE GLARMA(p,q) MODEL

1. Introduction

A primary advantage of the GLARMA(p,q) model is the

ease with which it can be adopted to cover a variety of

special cases. Two special cases, the first-order autoregres-

sive GLAR(l) and the first-order moving average GLMA(1), were
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covered in II.B and II.C. The intention here is to briefly

present three additional cases of the general model and derive

the correlation structure of each case. The special cases

considered are the first-order mixed model, GARMA(l,l),

the second order autoregressive model GAR(2), and a bivariate,

first-order, autoregressive model BGAR(l). The purpose

in presenting these cases is to demonstrate the flexibility
of GLARMA(p,q) and not to present a complete, detailed dis-

cussion of each model. Further extensions of the special

cases of the GLARMA(p,q) model from the examples given are

obvious. Details will not be given.

2. GLARMA(l,l)

Consider the following scheme for generating an iX }
n

sequence of random variables.

X = BA + CG, (II.D.2.1)n n n-l n n'

A = DnAn_1 + FnGn. (II.D.2.2)

where iXn, n = 1,2,...} is a second-order stationary sequence

of Gamma(k,l) random variables; {An , n = 0,1,... is a

second-order stationary sequence of Gamma (k,l) random

variables; {Bn, n = 1,2,... is an iid sequence of Beta(k-q,q)

random variables; {Cn , n = 1,2,...) is an iid sequence of

Beta (q,k-q) random variables; {Dn , n = 1,2,...) is an iid se-

quence of Beta(k-r,r) random variables; {Fn , n = 1,2,... is
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an iid sequence of Beta(r,k-r) random variables; {Bn}, {C 1,
n n

{D n, {F n, and {G are mutually independent; 0 < q <k;n n n

0 < r < k. The Beta (m,n) density is given in II.B.l.3; the

Gamma(k,l) density in II.B.I.2.

Before the serial correlation of the {X } sequence
n

can be determined, the serial correlation structure of the {A nn

sequence and the correlation structure between the {An I and

G n } sequences must be derived. Proceding first with the

serial correlation of the {An} sequence, from II.D.2.2 we

have

A = DnAn_ 1 + FnGn

So

AnA 1 - n n-1  nAnl

Using the iid nature of {D n}, F n}, {Gn ; noticing that when

i > j, Di and A., Fi and A., and Gi and A. are independent;

recalling the independence of {Fn}, {Gn}; and taking expec-

tations yields

E(AAn) = (k-r)k(k+l) +rn n-1l k2 k

k2k-

E(AnA ) 2 k2r (II.D.2.3)n n-1 i2
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Therefore,

k-rCOV (A n A An _ )  7
nn-1 k

and

k-r
CORR(An,An-1 ) = -- (II.D.2.4)

In fact A is just a GLAR(1) process, so the result is notn

surprising. Using II.D.2.2, II.D.2.3, and an induction argu-

ment leads to the general m-step correlation formula

CORR(A A n > m > 0. (II.D.2.5)n n-r

The correlation structure between A n I and {Gn I can

be derived in a similar fashion. However, it is more direct

to note that since the {An I sequence is the same as the GLAR(l)

process of Section II.B, the A n}, G n I correlation structure

will be the same as that derived for the {Xn}, {G n } sequences

in II.B.2. Hence,

r -r
COR(A ,Gn m) r k- m, n > m > 0. (II.D.2.6)

Of course, if j > i,' then CORR(Ai ,G j) = 0

Now the serial correlation for the IXn } sequence cann

be found. From II.D.2.1
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X B A + CGn nn-i nfn

Xn Xn-i (B n An-i+ n Gn)( n-i An 2 + C 1 G n1 )

B= Bn-1 A n 1 A n 2 +B nCnri1An-1iG n-1+B n-i CnA n-2 Gn

+Cn Cn-i n Gn-i*

Using the stationarity of the {A n }sequence, the iid nature

and independence of {B n1, {C}n, {G}nJ, the fact that A.i is

independent of G. when j > i, and the fact that {A }is inde-
j n

pendent of {B n by construction and taking expectations, we

have

* .E(XnXni E(B )E(B )E(A A )+E(B )E(C )E(A C)

+ E(B n-1)E(C)E(An2 )E(G )+E(C n)E(C n-1)E(G n)E(G n-1),

- E(B n)l 2 E(A1A )+E(B )E(C 1)E(A1G-)

E(B n-1)E(C n)E (An2)E(G n) +[E(Cn)l 2E( 2)

(II .D.2. 7)

From II.D.2.i

( n)E(X n-1 [E(B n)E(An-)E C (G)x

[EBn-i )E(A n 2 )+E(C n-I)E(G n 1 )],
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E(Xn)E(Xn) = [E(Bn ] 2E(AnIE(An 2 )+2E(Bn)E(C)E(A)E(G)

2 2+ [E(C n ) ] [E(G n ) ] (II.D.2.8)

*. Using II.D.2.7 and II.D.2.8 to compute COV(XnXnI) yields
n n-

2

COV(Xn' Xn) = [E(B n ) ] [E(AnIAn-2)-E(A n_)E(An- 2 ) ]

+ [E(Bn)E(C n )][E(AnIG n_)-E(An )E(G n ) ]

Since {A n, {G n, and {X n } are all Gamma(k,l), VAR(Xn) = VAR(An )

= VAR(Gn). Hence,

CORR(XnXnI) = [E(Bn)] 2 CORR(AnA )+[E(Bn)E(Cn)]CORR(A ,G

From II.D.2.4 and II.D.2.6 we know this equals

CORR(Xn'XnI) - ( k )2( k k (II.D.2.9)

Using II.D.2.5 and II.D.2.6 in an induction argument

yields the general m-step correlation of

krmlk-q 2 k- ki

CORR(XnXnr) = rn-+

Recognizing the expression in brackets as CORR(XnXn I) and

letting . equal this correlation we have
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CORR (X nXn-m)  k -lp , n > m > 1. (II.D.2.10)

Figure II.D.2.1 shows the possible combinations of

one- and two-step correlations for the GLARMA(l,l) model.

This concludes the development of the correlation structure

of the GLARMA(l,l) model.

3. GLAR(2)

Jacobs and Lewis [Ref. 12] first developed the follow-

ing mixture scheme for generating a p-order autoregressive

processes. We now adopt that scheme for generating a second-

order autoregressive sequence of random variables. This is

the special case of GLARMA(p,q) with p = 2 and q = 0. As such

it closely resembles the GLAR(l) process. Let

X = BnXnTn+ CnGn, (II.D.3.1)

where {Xn, n = -1,0,1,...} is assumed to be a second-order

stationary sequence of Gamma(k,l) random variables; {Bn,

n = 1,2,...} is an iid sequence of Beta(k-q,q) random varia-

bles; {C } is an iid sequence of Beta(q,k-q) random variables;n

{G } is an iid sequence of Gamma(k,l) random variables; B n},n n

{n, { n } are independent; also Tn is iid with PCTn =1)

1 -P(T =2) = c. The Gamma(k,l) and Beta(m,n) densities are
n

found in II.B.l.2 and II.B.l.3, respectively.

This generation scheme works even though Xn_1 and

Xn-2 are dependent random variables. The mixture of Xn-1 and
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SXn- 2 produced by II.D.3.1 is Gamma distributed and indepen-

dent of Gn . Hence, II.D.3.1 is simply another example of the

random sum of two independent Gamma random variables producing

another Gamma random variable.

Two special cases of II.D.3.1 are as follows. When

a = 1, the GLAR(2) process reduces to the GLAR(1). When q =k,

the X n } sequence is iid.

A The serial correlation of the {X } sequence can be
Ln

calculated in the usual fashion, assuming stationarity of

the process we have

Sn  B nBnXn-Tn + CnGn  k> 0; 0 <q < k

and

XnXn 1 = BnXn T Xn 1 + CnCnXn_1 .

1*|1

Using the independence of {C n } and (G n , the fact that Xi

is independent of C., G. and B. when j > i and taking expec-

*I tations we have

x2

IE(XnXn_) = aE(Bn)E( n_1 ) + (1-a)E(Bn )E(X Xn 2 )+E(CE(Gn)E(Xn 1 )

= ( -) (kik+l]) + (,_a) (kZ.)E(X +

since E(X) = E(G) = 1 by assumption. Using the second-order
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stationarity of (Xn

E(Xn i (i-a) (k-g) a (k-q) (k+l) +n E X l k k2  k

Upon simplification

*2
E(X 2k_+ak-ctkq-aq+kq
E(n n-l k(q+ak-aq)

Hence,

COV(XnXnI) = q+c (k-q) ]

and

CORR(Xn Xn 1) = a (k-q) (II.D.3.2)
n , i1 - i(k-q)

If x 1 i, this equals 1 - ; if k = q then it is zero. Since

q > k it is clearly non-negative.

The lag two correlation can be calculated in a

* similar fashion. We have

X = Bnn_ Cnn "

XX = BnX Xn-2 ++CnGnXn_2
xn xn- 2 Bn Xn-T xn-2 +Cn Gn Xn-2

and

71



Ell(X X ) - k- ( + (1-a) EX2 + _

Using the second-order stationarity of the {X n sequence we

can write

E(Xn)E(X) (k )E( 2EX +(-) E(

+ -tE (X) 2,

so that

COV(Xn IXn2 a E XX -( )EX

k 2 2

+ (1-a)(V [ -2 ) { (Xn 21

+a- S2tE(X )2
+k k n

(E cA)(X X )-E(X )E(X 2 )

+ (i-a) (k-g) [E (X2  - {E(X~ ) 2]

a( L-)COV(X 1 1 X) + (i-a)(kq A(

Hence,

CORRX ,X ) =c~-~COR(X ,) +(1-a) (k-g)
CORXn Ixn-2 ahkn-iRRXn- n-2 + k
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CORR(X'Xn- 2 ) = k q(k- (II.D.3.3)

The solution procedure for II.D.3.3, if followed for

Xn-mr will produce the general recursion equation (Yule-Walker)

that can be used along with II.D.3.2 and II.D.3.3 to compute

the m-step correlation. The formula thus produced is

CO(X'X= (k) [aCORR(XnXn+n)

+ (I-c)CORR(X nXn+2 (II.E.3.4)

n > m > 1.

As mentioned in previous sections the (X n Gn) pair

can be considered to be a correlated, bivariate pair of

Gamma(k,l) random variables, Therefore, we proceed to

derive the correlation structure between these two sequences.

From II.D.3.1 we have

Xn  = BnXTn n

and

XG = BX G + CG.
n n n n-T nn n n

Recalling the independence of {C } and {G and X. and G.
n n 1

when j > i, taking expectations yields
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E(XG) = (k) +- (k) (k+1)
nfn k 'k' k 2

k

Hence,

4. COV(X ,G ) -In n
k

and

CORR(X = (II.D. 3. 5)

nk n k"

Continuing this process we have i

n= BnXn-T n

and

XnGn 1  B nXnTGnl + CnGnGn_1 .

Thus

E(XnGn I ) = cL( q) E(X nGn) + (l-s)(k-.) +

Hence,
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ik
COV (X n, GnI) = ( )COV(Xn-l, GnI)

And

CORR(XnGnLa) = ( )

One further step in this process using an arbitrary

m-step lag produces the general recursion formula

I
.4

CORR(X nGnm) )[aCORR(X nGn+I.m)

+ (1-)CORR(Xn,Gn+2 m)], n > m > 2 (II.D.3.7)

Figure II.D.3.1 displays a plot of the possible com-

binations of CORR(Xn Xnl) and CORR(Xn Xn_2 ). Note that when

= 1, the GLAR(2) process reduces to the GLAR(l) and

CORR(XnXn 2 ) ( ) which defines the lower boundary of the

plot. When a = 0, CORR(Xn XnI) 0 and CORR(XnXn-2) k

which goes from zero to one. In the interior of the graph,

.when a does not assume an extreme value, CORR(XnXn-2 ) does

not reach a value of one. This is demonstrated by the

following calculation. From II.D.3.3

COR(X x -q [q+ak-2aq]
CORR(Xn'Xn- 2) (k) F(q+k q)

If this correlation is to equal one, then
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qr+ak-201q kk (II.D.3.8)

which quickly reduces to

q(-2ak-q+2kq) 0

Since 0 < q, this requires

-2ak-q+2aq = 0

Therefore,

2 (q-k) "

Since we know that 0 < q < k, a must be less than zero.

However, a is a probability and, hence, is non-negative.

Therefore, the original requirement in II.D.3.8 cannot be

satisfied. Hence, CORR(XnXn-2 ) cannot equal one.

4. BGAR(1), Bivariate Model

To this point the only examples of bivariate Gamma

processes presented were those in which the innovation se-

quence was one part of the bivariate p-ncess with the gener-

ated sequence the other part. The simple random, linear

structure of the GLAR(l) process makes it easily extendable

to a variety of bivariate models. We address only the

simplest. Consider the following pair of random variables,

both of which are formed from the same innovation process, G n}:
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X n  nXn_ 1 + CnGni (II.D.4.1)

Y = DnYn-i + FnGn' (II.D.4.2)

where {Xn, n = 0,1,...} is a second-order stationary sequence

of Gamma(k,l) random variables; IYn' n = 0,1,...} is a

second-order stationary sequence of Gamma(k,l) random varia-

bles; {Bn/ n = 1,2,...} is an iid sequence of Beta(k-q,q)

random variables; {Cn, n = 1,2,.. . is an iid sequence of

Beta(q,k-q) random variables; {Dn, n = 1,2,...1 is an iid

sequence of Beta(k-r,r) random variables; {Fn , n = 1,2,...

is an iid sequence of Beta(r,k-r) random variable; {Gn,

n = 1,2,.. . is an iid sequence of Garma(k,l) random

variables; ;B n, {Cn , {D n, {F n}, and {Gn I are independent;
0 < r < k; 0 < q < k.

This is a special case of a general situation. In
a more general case the {X } and iY I sequences could have

n n

separate, correlated innovation sequences instead of sharing

a single {G n sequence. In addition, the B n } and {D n

sequences and the {Cn } and {F n } sequences could be correlated.

Before examining the correlation between {X I andn

{Y n, it will be necessary to address the correlation of each

of these sequences with the {Gn I sequence. This is most

easily handled by recognizing that the relationship of the

{Xn } and {YnI sequences to the {G1.n sequence is exactly the

same as the {A sequence to the {G sequence in II.D.2.2.
n n
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Hence, the correlation structure will be the same. There-

fore, if we let px = CORR(Xn'X n-) and Py = CORR(YnYn-1)

n = 1,2,..., these correlation structures can be written

without further analysis as

=O (X G CORR (XnnI = 1 -PX (II.D.4.3)CORR(Xn, Gn)a

= n (-x 1 )Px; 1 (II.D.4.4)

CORR(X,Gn ) P (II.D.4.4)

n- = k l) (i- pm , n > m > 0. (II.D.4.5)

and

CORR(YnGn) -=1 - CORR(YnYn-I ) = I Py; (II.D.4.6)

CR(n Gn) k-rnl

CORR(YnGn r ( (1- py)py, (II.D.4.7)

CORR(YnGn ) m (- 0y)p m, n > m > 0 (II.D.4.8)

The assumption is that the bivariate process is stationary,

although it should be noted that starting the univariate

processes in a stationary mode does not make the bivariate

process stationary. The initial pair {X0 1Y0 } must have the

bivariate Gamma distribution associzted with the stationary

Markovian process.

Now we address the cross correlation between {X n  and

{Yn}. Start with II.D.4.1. We have
n
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Xn = BnXn 1 + CnGn

and

XYn = BnXn-iYn1 + CnGnYn_1 •

Using the independence of (Cn ) and {Gn} and that of Yi and

G. and C. when j > i and taking expectations

E(XnYn-I )  =)E(Bn)E(XnIyn-1 + E(Cn)E(Gn)E(Yn-1 ),

so that

E(XkY ( La)E(X + a (II.D.4.9)nn-I k nn-I k

Now starting with II.E.4.2, we have

Y = DnYn-1 + FnGn

and

XnYn  = DnYn-iX n + FnGnXn .

Taking expectations as above

E(XY) = E(Dn)E(XnY + E(Fn)E(G

80
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2

Using II.D.4.3 we deduce E(G X = k -+ so that
k

E(XY = k(XY)+ 2 (r). (II.D.4.10)

Invoking the second-order stationarity of the {XnY n } se-

quences, using II.D.4.9 and II.D.4.10 and letting w = E(X.Yi)

and z E(XiYi-l) , we have the two equations

i .W ( S=)z +(r,(k2g) (II.D.4.11)
k ~ k2

z = h(- )w + . (II.D.4.12)k k

Using II.D.4.12 to substitute for z in II.E.4.11 yields

W W + SLI +k 2+q)
k k k +k k2

k 2-kr-kq+qr]w (k-r) q +( )r
k2 k 2 k 3

When E(XnYn) is substituted for w after simplification, this

produces

k2 q-kqr+k2 r+rgE( dk (kq+kr--qr) "(II.D.4.13)

Hence

COV(Y n'n k(kq+kr-qr)
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and

CORR (Xn iY) =k rqr k > 0, 0 < q <k, 0 < r < k.

(II.D.4.14)

(1-pX )(-p)

T1-PY)+ (-PX(II .D.4 .15)

This latter expression follows since for a given k the corre-

lation structure is parameterized by r and q or equivalently

by the serial correlations pXand py given at II.D.4.3 and

II.D.4.6.

We can now substitute II.E.4.13 into D.E.4.12 to

solve for E(XY n 1 ).

E(X ki: ) ~k 2g-kgr+k 2r+rg,+_
E~n n-l k k(kq+kr-qr) k

3 3 2 2
_k q+k r+kgr-k qr-g r

2
k (kq+kr-qr)

Hence,

CQV(X 'Ynl kqr- 2 r

k (kq+kr-qr)

and

=CR( Y=r)kq CORR(X Y )P (II.D.4.16)
CR(nr n-) ~kq+kr-qr~k ~ n n X
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Continuing in this vein produces the general formula

CORR(Xn'Yn-) = (qkr) ( k )m (II.D.4.17)
n n-mkq+kr-qr k

- CORR(Xn,Yd Pm1  n>m>o.

Solving for correlations where the {Xn } lags the

{Yn} sequence is similar to the above process, but somewhatn

abbreviated. Starting with II.D.4.2,

Yn = DnYn-1 + FnGn,

we have

YnXn = DnYn Xn +FnGnXn_
yn xn-I D n Yn-i Xn-i n Gn Xn-i

Taking expectations as before gives

E(YnXn_) = E(D )D(YnXn) + E(Fn)E(Gn)E(Xn)

Using the second-order stationarity of {Xn and Y

E(YnIXn-l ) is known from II.E.4.13, so

2 2E( nlk-r k Q-kqr+k r+rq
n k[kq+kr-qr]' k

3 3 2 2
k q+k r+kqr-k qr-gr

k2 (kqkr-qr)
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Hence,

CV(Y= 
2 kqr-gr

2

nYn-I) k 2(kq+kr-qr)

and

CORR(Y,X) = ( _r)( ) = CORR(X Y )P

Further computations of this nature produce the

general formula

CORR(Yr r) m
n' n-m kq+kr-qr k

CORR(XnYn) P' n > m > 0; k > 0; 0 < q < k;

0< r < k.

To examine the correlation further, note that if

OX PY = p , then II.D.4.15 yields

CORR(Xn'Yn) = 1+-

Thus if o = 0 (i.e., the {X } and {Y nI processes are iid

sequences), this correlation is one. For {X I and {Y } ton n

be iid, we must have X = Gn = Yn" Therefore, this limiting

correlation does make sense and suggests that perhaps a bi-

variate Gamma should be used as the innovation process. This
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would allow for separate control of the serial correlation

(auto-correlation) and cross-correlation of the {X I and {Yn }
n n

sequences.

If p - 1 (i.e., Xn Xn-l' Yn Z Yn-1 ), the effect of

the innovation sequence is slight and the cross-correlation

between {Xn I and tYnI goes to zero. In a more complicated
n n

model than we have addressed here the cross-correlation may

be controlled by imposing a correlation on the {B n } and {D n

sequences.

Cross-coupled processes, as discussed in Gaver and

Lewis [Ref. 2], are possible. These can be used to create

negative serial correlations in the X n } and {Y n processes.

E. NUMERICAL CONVERGENCE OF THE MAXIMUM LIKELIHOOD COMPUTER
PROGRAM AND SIMULATION STUDY OF PROPERTIES OF ESTIMATORS

The program described in Section II.B.4 for computing the

conditional density function in the GLARI process was used

in two fashions. First, it was tested by using computer

generated data from a GLAR(l) process with known parameter

values k, q, and i. Simultaneously a simulation of properties

of m.l.e 's k and q for k and q was conducted. Second, it was

used to estimate the parameters in the GLAR(l) model for real

wind speed data. Only the first use is covered in this section.

The second use is addressed in Chapter IV, Preliminary Data

Analysis.

Four aspects of the program were addressed in the use of

the program with simulated data. These were: sensitivity

of the maximum seeking method to start point, the size of the

*maximum likelihood estimate
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standard deviation of the m.l.e and moment estimates of k and

q produced, and the degree of bias, if any, in the estimates.

In addition, normality of the distributions of the estimates

was investigated using normal plots and Shapiro-Wilks tests.

Because of the large computation time involved in obtain-

ing a m.l.e. the simulation study was small. Three types of

data generated from GLAR(l) processes were used to exercise the

program. Each type of data consisted of ten independent sets

(replications) of 1000data points each. The k and q values and

the correlation were varied from one type of data to another.

Thus the first type of data was generated with a k value of

4.0 and a q value of 1.0. These parameter values produce a

correlation of 0.75 (see equation II.B.2.1). The second type

of data varied the correlation, but retained the same k value.

A k of 4.0 and a q of 3.0 produce a correlation of 0.25. These

values were used to produce data sets of the second type.

The third type of data returned to a high correlation, but

used a small k value. The parameter values used to generate

this data type were a k of 0.75 and a q of 0.1875. These

values also produce a correlation of 0.75. Table II.E.I

summarizes these cases. In all cases, p = 1.

TABLE II.E.I

CASE k q

1 4.0 1.0 0.75

2 4.0 3.0 0.25

3 0.75 0.1875 0.75

*maximum likelihood estimates
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The Gamma variates were generated by the program LLRANDOMII

[Ref. 16] and all runs were performed on the NPS IBM/3033

computer.

To test the sensitivity of the maximum likelihood computer

program to the starting point of the search for a maxinum,

each set of data was used in two runs of the program. The

first run used the actual parameter values k and q as a start

point. The second run used the moment estimates k and q of

the parameter values (see equations II.B.4.15 and II.B.4.16) as
* ^S

a start point. The resulting m.l.e. parameter estimates k and

q were recorded.

The first case had k = 4.0 and q = 1.0. The results of

the computer runs are presented in Table II.E.2 for data of

the first type. The last column presents the two-dimensional

distance in the (k,q) plane between the estimates produced by

the two different start points for each data set. Although

the values do not differ widely, the relatively large differ-

ences in some cases indicate that the likelihood function is

relatively flat near the maximum.

However, there is another factor which may be contributing

to differences in final parameter estimates. The calculation

of the likelihood function for 1000 data points requires the

numerical evaluation of 999 integrals (see equations II.B.4.2

and II.B.4.3). The IMSL routine DCADRE was used for this

evaluation. Two of the parameters in the call to DCADRE are

maximum likelihood estimates.
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TABLE II.E.2

Results of Search for Maximum Likelihood Estimates
in a GLAR(1) Model; k = 4.0, q = 1.0

Value of
Data Starting Value Rum Tim Ntber of Ending Value Max mm Diffeence
Set k q (in Min.) Iterations k a Likelhood (11)

0 4.000 1.000 20 6 3.668 0.882 -214.479 46

0 2.884 0.538 129 17 3.624 0.886 -214.488

1 4.000 1.000 19 2 4.004 0.979 -204.819

1 4.235 1.101 46 5 4.014 0.983 -204.820

2 4.000 1.000 104 14 3.451 0.869 -260.332 11
2 3.360 0.805 112 14 3.440 0.867 -260.333

3 4.000 1.000 16 2 3.977 1.051 -206.416
24

3 3.767 0.947 71 15 3.955 1.041 -206.418

4 4.000 1.000 52 5 4.246 1.232 -304.365 8
4 4.423 1.233 45 6 4.254 1.235 -304.366

5 4.000 1.000 47 3 4.061 0.998 -211.074
68

5 4.647 1.187 27 4 4.122 1.028 -211.060

6 4.000 1.000 61 4 3.593 0.891 -229.087
29

6 3.387 0.782 55 9 3.565 0.883 -229.092

7 4.000 1.000 37 5 4.041 0.973 -241.637

7 4.421 1.069 82 7 4.051 0.974 -241.636 10

8 4.000 1.000 37 6 4.024 0.999 -240.432~88
8 3.927 0.856 24 8 4.106 1.033 -240.424

9 4.000 1.000 51 3 4.109 1.054 -255.245 70
9 4.398 1.112 38 5 4.174 1.081 -255.229
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the relative and absolute errors allowed for this calculation.

Practical considerations of computer run time dictated rela-

tively large values of 10~ for each of these parameters.

This error when applied 999 times in the calculation of the

likelihood function may have lead to the differences in m.l.e.

parameter estimates. As a test of this hypothesis the data

set which produced the largest distance between the pairs of

estimates (data set 8) was rerun with DCADRE error parameters

set at 1010 The run which used the actual parameter values

d as a start point ran ir. 171 minutes and produced estimates of:

k = 4.102, q = 1.031. The run which used the moment estimates

as a start point was terminated after 404 minutes CPU time. At

that point it had estimates of: k=4.088, q = 1.025. The

distance of 15 x 10~ represents a significant reduction in

the previous distance of 88 x 10. It seems from this exam-

ple that the program can be made less sensitive to the starting

point by increasing the accuracy with which DCADRE computes

the integrals in the likelihood function. of course, a con-

siderable increase in computational cost is incurred. This

cotis not practical in these simulations or necessary since

p only a rough idea of the properties of the estimates was sought.

The results of the runs for data type one are also presented

in Figure II.E.l. First, each pair of estimates, (k,q) and (k,g)

is plotted in the k,q plane. Then each point is projected

along each axis to more conveniently reflect the marginal

variation in the estimates for each parameter.
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When k =4.0 and q =1.0, the method of moments produces

estimates for k with a sample mean of 3.94 and a sample

standard deviation of 0.55. The statistics for the estimates

of q are a sample mean of 0.96 and a sample standard deviation

of 0.21. The maximum likelihood method produces estimates of

k with a sample mean of 3.93 and a sample standard deviation

of 0.27. The values for q estimates are a sample mean of 1.00

and a sample standard deviation of 0.11. Although the method

of moments and maximum likelihood method do not produce signi-

ficantly different values for the mean of the estimates of the

parameters, the lower estimated standard deviation for the

likelihood method makes this technique more desirable from

the standpoint of precision. No bias was evident in either

estimation technique with the precision attained in the

* simulations.

The second case was the low correlation case with k = 4.0

and q = 3.0. Here the distinction between the two estimation

procedures is not as clear (Table II.E.3 and Figure II.E.2).

The method of moments produced estimates for k with a sample

mean of 3.99 and sample standard deviation of 0.17. The esti-

mates for q had a sample mean of 2.9f' and sample standard

deviation of 0.18. The maximum likelihood method produced

estimates of k which had sample mean 4.00 and sample standard

deviation 0.16. The q estimates had a sample mean of 2.99

and sample standard deviation of 0.17. It is clear that neither

method of parameter estimation enjoys a distinct advantage
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TABLE II.E.3

Results of Search for Maximum Likelihood Estimates

in a GLAR(1) Model; k = 4.0, q = 3.0

Value of
Data Starting Value Runi Tine Numb~er of Ending Value Maxizmum Difference
Set k q (in Min.) Iterations k q Likelihood (10-3)

0 4.000 3.000 38 6 4.078 3.187 -620.637

0 4.019 3.271 25 5 4.085 3.192 -620.637

1 4.000 3.000 23 4 3.780 2.934 -655.488
1 3.718 2.843 26 4 3.775 2.931 -655.489

2 4.000 3.000 40 3 3.789 2.765 -663.886 3
2 3.912 2.862 27 5 3.789 2.762 -663.886

3 4.000 3.000 44 7 4.321 3.132 -585.7765
v3 4.000 3.116 50 4 4.316 3.130 -585.774

4 4.000 3.000 44 4 4.166 3.403 -604.719

4 3.958 3.174 68 6 4.152 3.385 -600.715 22

5 4.000 3.000 27 6 3.890 2.904 -638.667

5 4.001 3.048 13 4 3.885 2.902 -638.666

6 4.000 3.000 43 3 4.051 2.873 -599.581

6 4.221 2.902 49 5 4.049 2.878 -599.5815

7 4.000 3.000 23 2 3.954 2.934 -627.062

7 4:079 3.074 16 7 3.963 2:941 -637.234

8 3.708 2.633 32 6 3.908 2.891 -637.233 1

9 4.000 3.000 15 2 4.111 2.924 -590.563

9 4.093 2.906 43 2 4.121 2.934 -590.562 1
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over the other with respect to precision or accuracy. How-

ever, the method of moments is considerably cheaper with

respect to computation time required. This is consistent

with known results that for i.i.d. Gamma data (k = q), the

moment estimate for k is quite efficient when compared to

the maximum likelihood estimator.

Third case (k = 0.75, q = 0.1825). The third type of data

was a high correlation case with a low k value. Specifically

k = 0.75, q = 0.1825, and the correlation was 0.75. As can

be seen in Figure II.E.3 and Table II.E.4, both the methods of

parameter estimation considerably overestimated the parameter

values, indicating considerable bias in the procedures. The

method of moments produced estimates for k with sample mean

of 0.8061 and sample standard deviation of 0.067. Those for

q had a sample mean of 0.232 and sample standard deviation of

0.026. The likelihood method produced estimates for k with a

sample mean of 0.852 and sample standard deviation 0.039. The

corresponding statistics for q estimates are 0.224 and 0.004.

As was true in the other high correlation case, the standard

deviations of the maximum likelihood estimates are consider-

ably smaller than those of the moment estimates. However,

since the evidence is that the estimates are highly biased,

the advantage of this smaller standard deviation is not clear

unless additional data would serve to reduce the apparent

bias. The detailed results for this data type are presented

in Table II.E.4 and Figure II.E.3. It would be of interest
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TABLE II.E.4

Results of Search for Maximum Likelihood Estimates
in a GLAR(1) Model; k = 0.75, q = 0.1875

Value of
Data Starting Value Run Time Number of Ending Value Maximum Difference
Set k q (in Min.) Iterations k q Likelihood (10- 3 )

0 0.7500 0.1825 85 5 0.861 0.221 325.685
2

0 0.9795 0.2489 136 4 0.863 0.222 325.685

1 0.7500 0.1825 59 4 0.832 0.235 866.216t. 0
1 0.8026 0.2351 19 1 0.832 0.235 866.214

2 0.7500 0.1825 72 4 0.806 0.224 439.198

2 0.7621 0.2147 66 4 0.807 0.224 439.198

3 0.7500 0.1825 141 2 0.866 0.222 1131.684

3 0.7514 0.2213 121 1 0.866 0.222 1131.671 0

4 0.7500 0.1825 59 4 0.807 0.223 2333.130

4 0.7749 0.2420 54 5 0.807 0.222 2333.131 1

5 0.7500 0.1825 59 4 0.910 0.217 883.801

5 0.8336 0.2320 210 4 0.910 0.217 883.801 0

6 0.7500 0.1825 129 5 0.885 0.222 287.798

6 0.7308 0.1790 88 4 0.884 0.222 287.799 1

7 0.2500 0.1825 71 5 0.795 0.223 977.265

7 0.7759 0.2241 117 8 0.795 0.223 977.265 0

8 0.7500 0.1825 66 6 0.906 0.227 1018.470
0

8 0.8092 0.2863 136 6 0.906 0.227 1018.472

9 0.7500 0.1825 57 4 0.818 0.212 410.842

9 0.8335 0.2347 85 3 0.852 0.225 411.703 36
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to see if a technique such as (2-fold) jacknifing, such as

that applied by Quenouille [Ref. 17] to correlation estimates,

would help here.

A much larger study would be needed to come to definite

conclusions about the efficiency of maximum likelihood esti-

mation in this model. However, as in the i.i.d. case for

Gamma variates, m.l.e.'s are likely to be considerably better

than moment estimations for values of k less than one.

Note too that the maximum likelihood estimation did not

include the mean value parameter. This could be done or the

mean could be estimated from the sample mean X. The inflation

of variation of X due to the correlation is known to be

(asymptotically)

I 2 Pk 1 + p

1+2 k =

k=l P

Thus for P = 0.75, the effective sample size for estimating

u in a sample size of size n is n(l-p)/(l+p). For p = 0.75

this is n/7.

The normality of the estimates was investigated with normal

plots and Shapiro-Wilk tests for normality. A summary of

results if given in Table II.E.5. The normality hypothesis

is accepted at a 0.95 level if the Shapiro-Wilk statistic W

is higher than 0.842, at a 0.99 level level if it is higher

than 0.781. No strong indication of non-normality is indicated

in any case.
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III. MOVING AVERAGE MODELS

A. INTRODUCTION

Although several researchers have proposed models for

correlated, marginally exponential random sequences [Refs. 18,

19, 20, Gaver and Lewis [Ref. 2] produced the first analytically

and computationally tractable model for the generation of

correlated, marginally Exponential random sequences. They

showed that in the usual linear, additive, first-order, auto-

regressive equation

Xn = n+ 1 + En  (III.A.I)

where (Xn, n = 0,1,2,...} is a second-order stationary,

marginally Exponentially distributed sequence of random varia-

bles; {En' n = 1,2, ... } is an independent, identically dis-

tributed (iid) sequence of innovative random variables;

0 < 3 < 1, the distribution of the {E n} which produces the

desired marginal distribution for {Xn I is
In

E JO with probability 3,E =J (III .A.2)

E n with probability 1-8,

where En , n - 1,2,.. .} is an iid sequence of Exponentially

distributed random variables with the same parameter, A, as

the {X n sequence. Equation III.A.l can now be written as
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aXn-_1  with probability 8,

Xn = (III.A.3)

aXn_1 + En with probability 1-.

If {In, n = 1,2,...} is an iid binary sequence independent of

{X } and {E } such that P(In = 0) = 1- P(In = 1) = $, then

equation III.A.3 can be more succinctly written as

X n  = X Xn_ 1 + I nE n ' (III.A.4)

Xn is a random linear combination of identically distributed

random variables in the sense that the variable En actually

enters into the sum only when the random variable In has value

nn

depends only on the distribution of Xn_ 1 and En, Xn will be

Exponentially distributed whenever both X . and En are inde-

pendent and have the same Exponential distribution. This

understanding allows the autoregressive relation in III.A.4

to be transformed into a moving average by substituting another

innovative random variable for the X to produce

X = +En + InEn+ .  (III.A.5)

This model was designated the EMA(l) for Exponential moving

average of order one. This EMA(l) model is one dependent in

that X and X are independent for j ±1. Consequently,

only the lag one correlation, p = = CORR(2n'Xn+i) or more

completely only the joint distribution of Xn and Xn+l need be

studied.
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Lawrance and Lewis [Ref. 51 give a fairly complete des-

cription of this EIA(l) model. Of particular note is the

relative tractability of this model which enabled the authors

to derive correlations, distributions of sums of Xn s,

intensity function, spectrum of counts, joint density of

Xn and Xn+1 , conditional expectations, and other properties.

The existence of these characteristics is beneficial in data

analysis and is a primary advantage of the EMA(l) over pre-

viously suggested models. However, the EMA(l) model does

possess a limitation. The range of possible positive correla-

tions, pI, is restricted to the interval from zero to one-

quarter. Thus for a given correlation between zero and

one-quarter, the structure of Xn and Xn+l and the sample path

behavior of the sequence are determined.

The structure of III.A.l is that of a special random linear

combination of Exponential random variables to given an Exponen-

tial random variable. Other such random linear combinations

are now known and for the first-order autoregressive case

produce dramatic differences in sample path behavior of the

sequence {Xn}. In this section of the thesis we investigaten
these random linear combinations in the context of the first-

order moving average structure.

In this Chapter we examine extensions of the model in four

ways:

1. Negative Correlation

McKenzie [Ref. 21] has suggested a scheme for inducing

negative correlation in the EMA(l) process by correlating the
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sequence {In}. A better scheme, in that it produces a largern

range of negative correlations, was introduced by Lawrance

and Lewis [Ref. 8] for the extended first-order autoregressive

model NEAR(l). This scheme involves a bivariate error se-

quence {E ,E'} and its use is investigated in this thesis for
nn

the moving average process.

2. New Exponential Moving Average Model of Order One,
NEMA (1)

It will be shown that no first-order moving average

process which is a random linear combination of Exponential

random variables can have correlation greater than one-quarter.

Thus the differences in the processes for given correlation is

investigated in terms of the joint structure of Xn and Xn+l .

The NEMA(l) process obtained by using the NEAR(l) structure

[Ref. 8] in a moving average context is analytically tractable

and quantities such as the joint Laplace-Stiltjes transform

of Xn and Xn+ I , the spectrum of counts, P(Xn+1 > Xn , and condi-
i

tional expectations are obtained. It also combines the forward

and backward EMA(l) models as extreme cases and is thus a

natural extension of the EMA(l) model.

3. The Moving Minimum Model

A non-linear combination of EXponentials involving

minima has been applied by Tavares [Ref. 22] to obtain a first-

order autoregressive process which is intimately connected

[Ref.231 with the EAR(l) process of Gaver and Lewis [Ref. 24].

This structure is applied to the moving average process. It

is shown that this process extends the range of attainable
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correlations in first-order "moving average" process beyond

that obtainable by random linear combinations of Exponentials.

However, the process is slightly degenerate in that there is

a positive probability that successive points will lie on the

line X = bXn for positive correlations and on the curve
-Xn -x n+l

e + e = 1 for negative correlations. The price paid

for the extended range of correlations is a limited analytical

tractability as compared to the EMA(l) or NEMA(l) processes.

The moving minimum process is investigated in terms of the

joint structure of Xn and Xn+l Although the joint distribution

can be derived, the functions are difficult to examine in

detail. Therefore, simple characterizations of the joint

structure, in addition to the correlation, are examined. These

include the P(X > Xn) , a crude measure of the tendency of

the sequence to exhibit runs up and down, and conditional
expectations, E(XnXn 1 =x) and E(Xn 1iXn=y).

4. The Beta-Exponential Model

Finally, another random linear combination of Exponen-

tials to produce correlated Exponentials is examined. Unlike

the previous models, the coefficients of the Exponential random

variables are themselves continuous random variables. This in-

creases the complexity and reduces the analytical tractability

of this model. Simple sample path characteristics are derived

or simulated. These are special cases of the GLAA(l) from Chapter II.

B. NEGATIVE CORRELATION IN MOVIN AVERAGE MODELS

The problem of non-negative correlations was addressed by

McKinzie [Ref. 21] who modified the form of the EMA(l) model to be:
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Xn = En + (I- Zn)EI ,  (III.B.l)

where {En, n = 0,1,2, ... } is an iid sequence of Exponential

random variables, {Zn , n = 1,2,...} is a sequence of binary

random variables with P(Z n = 1) = 1 - P(Z n = 0) = 8, and Zn

is independent of all En and all past Xn . By imposing an

MA(U) correlation on the sequence {Zn, McKenzie was able to

nproduce a negative correlation for the (X n. However, this

negative correlation is achieved at the cost of reducing the

possible range of positive correlations for the {X n. Using

McKenzie's formulation, the range of correlations obtainable

with the EMA(l) model is (-1,iTO

An alternative procedure for producing negative correla-

tions was introduced by Lawrance and Lewis [Ref. 8]. Their

procedure requires two series of innovative factors (En,

n = 0,1,...} and {En, n = 0,1,...} which are correlated and

may be antithetic.

Antithetic variables are generated by using the fact that

the variables E. and E! defined as:S1 1

E. -in(U i ),)1 1

(III .B.2)
E! -in (I-U i

1 1

where U., i = 1,2,... is a sequence of uniform (0,1) random

variables, are both marginally Exponentially distributed and

correlated. P.A.P. Moran (3ef. 25] has determined that the
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correlation between Ei and E! is approximately -0.64491 1

and this is the lowest correlation possible between

Exponential random variables. E. and E' have a deterministic
1 i

relationship since

-E.

E!= -ln(l - e ). (III.B.3)
1

Using the Lawrance and Lewis extension of the EMA(l)

process, the model becomes

Xn BEn + IEn-l' (III.B.4)

where {En, n = 1,2,...} is an iid sequence of Exponential

random variables, {E', n = 0,1,...} is a sequence of Exponen-
n

tial random variables which are correlated with the respective

variables in the (En} sequence, (In, n = 1,2,.... is a sequence

of independent binary random variables with P(In = 0) = 1 - P(In = 1)

= 3, 0 < 8 < 1, and {In}, IE } are independent of each other
n n

and all previous Xn values.

The correlation of the X's can then be computed as follows.

Let E(X) = and recall that since {X n } and E n } have the

same marginal exponential distributions, VAR(Xn) - VAR(En).

X n+i Xn  [BEn+1 +In+lE%][E n + InEn'_ ]

= 32EnEn+3 n  E E'+ E E' + IEE'_ .n n+l n n n n+l n 1 n+l n
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Thus, using the independence of {E n}, {I n}, and the iid nature

of {E n } and {I n }

E(X n+ Xn ) = 2"2 +a(i- )[COV(E n,E )+I-2  2 +( - 2 2

= 2 + 3(I-)COV(E n,E )

Therefore,

COV(Xn+IXn) = (I-)COV(EnE n )

and using VAR(X) = VAR(E)

CORR(Xn+'IX n) = 3(I-a)CORR(E n,E) (III.B.5)

Using Moran's result [Ref. 25] the correlation of antithetic

Exponentials is known to be approximately -0.6449. Therefore,

the greatest negative value that can be achieved for CORR(Xn+ 1 Xn)

is approximately -0.1612 when 3 = 0.5. Since no restriction

was placed on CORR(E n,E'), the sequences {E n } and {En } need

not be antithetic, but can have any correlation that is possi-

ble for two Exponential sequences with the same marginal dis-

tribution. By specifying that E' =nE the original EMA(l)n n

is achieved and the correlation for the X's is 3(1-a) as in

Lawrance and Lewis [Ref. 5]. By allowing the correlation be-

tween the iE n } and {E' } sequences to vary from -0.6449 to

1.0, the correlation of the X's will vary from a minimum of
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-0.1612 to a maximum of 0.25 (also depending on the value of

S) as can be seen from III.B.5. The Lawrance and Lewis exten-

sion of the EMA(1) model gives greater possible variation in

the correlation than that of McKenzie, but requires two se-

quences of Exponential random variables to achieve this range.

Although it is clear that with E' = E n a CORR(E E') = 1

and when {E n  and {E'} are antithetic CORR(E n,E n') = -0.6449,

it may not be obvious how to generate {E'} sequences with

correlations between these two extreme values. A simple bi-

variate exponential sequence with any desired correlation in

the permissible range can be generated using the relationship

Ei  with probability p,
Ei (III .B.6)

Ei with probability l-p,

where Ei is the antithetic of E. Then the extended EMA(l)

model has two parameters, 3 and p, and the range of correla-

tions for the X's is -0.1612 to 0.25, as above. The bivariate

density for the pair ;E! ,E} is not smooth. Other bivariate

densities such as those in Gaver [Ref. 26] and Lawrance and

Lewis [Ref. 271 can also be used.

The above ideas on extending the correlation structure of

the moving average models to encompass negative correlation

can be applied to all of the new models given below. Details

are not given.
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i_ C. THE EXTENDED EMA(l) MODEL, NEMA(l)

1. Introduction

The original Exponential moving average process is

discussed by Lawrance and Lewis [Ref. 5]. This paper

considers the first order process defined by:

E 8 n  with probability 8,
Xn  (III.C.l)

3En + En+l with probability (1-B),

where {En, n = O,l,±2,...} is an iid Exponential sequence and

0 < 3 < 1. This random linear combination of Exponential

variates is called the EMA(l) model for Exponential moving

average of order one. Since Xn is a function of En and En+ I ,

ti.±s version is called the forward EMA(l). The backward

version of EMA(l) is obtained when En+l is replaced by Enl

in III.C.l.

The fact that EMA(l) is a single parameter model sug-

gests that this model may not be sufficiently flexible to

address all processes. Investigation of an alternate, two

parameter model may indicate that a two parameter model is

sufficiently more flexible to justify its increased complexity.

The extended, two parameter model is based on the new

Exponential autoregressive process of order one (NEAR(l)).

The NEAR(l) model propounded by Lawrance and Lewis [Ref. 8]

is defined as
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En + Xn-1 with probability a
-- (III.C.I.2)

nEn with probability (1-a)

where {Xn, n = 1,2,...} is a second-order stationary sequence

of Exponential random variables with parameter X, {E i is ann

iid sequence of innovative factors, 0 < 8 < 1, 0 < a < 1, and

a+a < 2. By letting cx(s) and E (s) denote the Laplace-

Stieltjis transform of X and E respectively, Lawrance and Lewis
determined that 0 (s) = X A Using a partial

fraction solution technique to invert this transform produced

1-BE with probability l-(1-c)B
E (III.C.l.3)

n
(1- a)BEn with probability 1-

where {Eni n = 0,1,2,.... is an iid sequence of Exponentially

distributed random variables which has the same parameter as

the {X n sequence.
n

By noticing that the autoregressive model given in

III.C.I.2 using III.C.l.3 is a random sum of two iid Exponen-

tially distributed random variables, the NEMA(l) model is

produced by substituting Enl for Xnl in the NEAR(l) model.

This procedure is identical to that used to produce the EMA(l)

model from the EAR(l) model and yields

En+ SEnl with probability a,
Xn = (III.C.1.4)

E n  with probability 1-a.

109



Ll
This model can be written in a more compact form as

Xn = KnEn + nI (III.C..5)

where {Xn, n = 1,2,...1 is a second order stationary sequence

of marginally Exponentially distributed random variables;

{En' n = 0,1,... is an iid sequence of Exponential random

variables with the same parameter as the {Xn I sequence;

{In , n = 1,2,... is an iid sequence of random variables with

P(In =8) = l-P(In=0) = a; {Kn , n = 1,2,...} is an iid se-

quence of random variables with P(K = 1) = l-P(Kn = (I-)) =

1; In}, {Kn , and {E } are mutually independent;T~T~~ n n n

0 < < 1; 0 < < 1; and a+ < 2.

The NEMA(l) model contains both the forward and back-

ward versions of EMA(1) as special cases. When a = 1;

P(I n = ) = 1, (l-a), = 0, and P(K n=0) = 8. Hence, the

NEMA(l) model becomes

x3E n_ with probability S,
X =(III.C.I.6)

nEn_ 1 + En with probability (l-a).

This is a form of the forward EMA(1).

When a = 1; P(In=1) = a, (l-a)B = (1-a), and

P(Kn= (1-s)) = I-(I-_) = 1. In this case, the NEMA(l) model
n= l1-a)3

becomes
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(1-a) En  with probability (1-a),

X = (III.C.l.7)n
(1-a) En  n-i with probability a.

This is a form of the backward EMA(l) with $ = 1-a. There-

fore, the NEMA(l) contains the special cases of EMA(l) when

a and a assume specific values.

One should also note in passing that the {X n } sequence

becomes an iid sequence if a = 0 or a = 0.

2. Correlation Structure

The following relationships will prove of value in

succeeding calculations

P(In= ) = 1 - P(I n= 0) = a. (III.C.2.1)

E(I n ) a= + (l-a).0 = aa. (III.C.2.2)

P(Kn= 1) = -P(K n= (l-a) ) (III.C.2.3)

i- (l-t) 3"
1-a 1s8l(_

E(K) = l( 1 l + (-a)( -a

1- 1+a 3

2_ 2-2
2_ -a_23

-+3 R -7+36
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E(K n ) = n-aS (III.C.2.4)

X Xn  K Kn En + I n En_ 1  (III.C.2.5)

E(X ) = E(KnEn + In E n) (III.C.2.6)

= E(Kn E n ) + E(I n-I)

= E(Kn)E(En) + E(In)E( En 1 )

= (1-ct))E(En) + cuE(En- 1 )

E(X) E(E)

Since X n } and JE are both Exponential, E(X) = E(E) implies

VAR(X) = VAR(E). Since both {iE n I and {iX n I have the same

Exponential parameter, without loss of generality this param-

eter will be considered to be 1. This, of course, requires

E(X) = 1 and VAR(X) = 1.

The possible range of correlations for the NEMlA(l)

model can be determined by a simple calculation. We have

Xn K nEn + InEn-l'

Xn+1  Kn+ E n+ + IEn+IE.

Thus
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Xn n+l = (KnEn + I nEn-)(Kn+l En+l +In+l En )

-K K E E + K I E E +K I E2
n+ln n+ln n+ln n+ln-l n n+ln

+ In+IInEnEn_1

Using the independence of K n}, IIn } and tEn } and the iid

nature of these three sequences, we have

E(XnXn+I) = (l- ) [E(E )2 + (2-)cS[E(En2
nnln n

+ (l-aa)ca[2{E(E n)} 2 + () 2[E(En)] 2

= 1 +

Therefore,

COV(Xn Xn+I) = (i-ct)c8

and

CORR(XnXn+) = (l-cS)c. (III.C.2.7)

Therefore, the original NEMA(l) model has the same range

of possible correlations as the EMA(l), namely that the corre-

1
lations must lie in the interval 0IT] One should note that it

is not possible to distinguish the parameters a and from the

correlation, or even whether the product, a3, has a given value

or one minus that value. This is similar to the normal moving
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average model of order one where the cases and 1/0 are

indistinguishable. In the normal case, the range of 0 is

limited to the interval [0,1] on the basis of invertibility

(Ref. 28]. It would seem simple and convenient here to limit

ac to the interval [0,1]. However, non-normal processes are
'2

not completely determined by their correlation structure. In

fact, Jacobs and Lewis [Ref. 6 ] showed that in the EMA(l)

case, the values a and (1-$) can be distinguished using direc-

tional moments, E(X X 2 I ) and E(X2Xn+I). Hence, such a re-tionan

striction on the value of aS is inappropriate.

One should also note that, since the correlation

between Xn and Xn+K is zero for all K with absolute value

greater than one, the first-order correlation completely

determines the correlation structure of the model.

The restriction on the range of attainable correlation

is disappointing but not surprising since it can be proven that

any Exponential moving average process of order one generated

as a linear combination of independent Exponentials must have

a correlation that lies in the range [0,-T]. The proof of

this contention follows the previous calculation closely.

THEOREM:

Assume {En, n = 0,1,2,...} is a sequence of iid Exponen-

tial variables with unit mean,{A n , n = 1,2,...} and {Bn ,

n = 1,2,.. .} are sequences of iid random variables, and {An},n

{B n}, {E n } are all mutually independent. Moreover, assume the

sequence (Xn, n = 1,2,...} defined by
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Xn = AnEn BnEn-I (III.C.2.8)

is a unit mean Exponential sequence. Now

E(X n) = E(AnEn +BnE I
EXn E(n En +Bn En-1)

= E(An )E(E n ) + E(B n )E(En -1)

1 = E(A ) + E(B n ) (III.C.2.9)n n

In addition, since Xn > 0 for all n, both An and Bn must be

non-negative for all n. Hence E(An) > 0 and E(Bn) > 0. It

also follows that 1 > E(A) and 1 > E(B). Now

Xn Xn+l (An En BnEn-I (An+iEn+1 + Bn+IEn )

Therefore

E(Xn Xn+l E(An+l An En+ En + An+l Bn En+l En- + AnBn+E n

+ B BE En+l n n n-i

[E(A)]2 + E(A)E(B) + 2E(A)E(B) + [E(B)] 2

(E(A) +E(B)] 2 + E(A)E(B)

Since E(A) + E(B) = I from III.C.2.9, E(A) + E(B) = 1.

E(XX ) 1 + E(A)E(B)n n+l
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Therefore, since E(X n ) is one, by assumption,

COV(XnXn+ ) = E(A)E(B)

= E(A) [1- E(A) I

and

CORR(XnXn+I) = E(A) [i- E(A)I (III.C.2.10)

Since 0 < E(A) < 1, the correlation must lie in the interval

[041. Q.E.D.

The possible range of correlations can be extended by

reformating the model. We choose to do this first by using

the method devised by Lawrance and Lewis [Ref. 8) and given

in equation III.B.4. With variables and sequences defined as

in equation III.C.1.5 let {En} and {EA} be correlated sequences

and redefine the NEMA(l) as

Xn = KnEn + I n-E'. (III.C.2.ll)

Then it follows that

XnXn+ 1  KnEn + I E + In+1 En )= In n-1 ) (n+l n+l1 ~

=K K E E + K I E %_ + K lEE'n+1ln n+ln n+ln n+inl nIn+Inn

+ I n+I nEAE'
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Thus

E(XnXn+ I ) = (-c)2+ (1-aa)ca$+ (l-oB)ca[COVEn ,E ']+1] + a2 2

1 + (l-aa)ciCOV(En ,E')nn

and

COV(Xn ,Xn+I) = (-B)aCOV(En ,E)

Fina ly

CORR(Xn Xn+I) = (I-a±)a CORR(En,E . (IIIC.2.12)

As described above, Moran [Ref. 251 has determined that

the range of possible correlations for two Exponentials is

(-0.6449,1.0). Thus whena6 = 0.5, the possible correlations

for X and Xn+l fall in the interval (-0.1612,0.25). This

procedure extends the range of possible correlations at the

cost of generating the additional {EA} sequence.

McKenzie [Ref. 21] has suggested that the range of

correlations could be extended by requiring that the I n }

sequence be correlated. Using this scheme, he was able to

show that the correlations for the {X n  sequence lies in the

interval (- --. Because of the requirement of the moving

average process of order one to have zero correlation for lags

greater than one, the correlation of the iI n  sequence also
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had to be of MAUi) type. It is this restriction that pro-

duces such a narrow range of correlations. A logical and

obvious extension to McKenzie's work is to require that both

the {K } and (I } sequences in the NEMA(l) model have a MA(l)n n

correlation structure. This can be combined with the corre-

lated {E }, {E ) scheme of Lawrance and Lewis. If this com-n n

bined case is carried out, the NEMA(l) model is as follows

Xn Kn En + In' _ ,  (III.C.2.13)

where {Kn , n = 1,2,...} is a sequence of random variables

nnwith an MA(l) correlation structure with P(Kn= 1)=

-P(Kn= (1-03) _ , n = 1,2,.. .} is a sequence
nn

of random variables with an MA(l) correlation structure with
P(I 8) = l-P(I n = 0) = (x; iE } and {E'} are correlated se-

n n n n

quences with marginal Exponential distributions with unit

means; and {K ", (I } and (E I are mutually independent.
ni n1 n

Now

XXn 1  - (KEn + nE' In n-)(Kn+iEIn 1+E)

Kn+l KnEn+lEn+ Kn n+J. n n n-i n K nn+lE n 

+ I I E'E'n+l n n n-

So
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E (X nX ) = E(K nlK n) + (l-a)+ (- )6E (E nE')+E (InIn)

2
=COV (K n 1 'K ) + (l-a) + (1cta) aa

= +COV(K n+ 1 ,K n)+COV(I n+iI n)+(l-cx6)a COV(E nE)

Therefore

COV(X~ 'Xni = COV(Kn~ 1K)+COV(I ~1 I )+(l-xa)aBCOV(E ,E)

and

CORR(X n X nl OV1 )~' )+O( nl ~I n (III.C.2.l4)

Although this scheme obviously extends the range of possible

correlations, it does so at the expense of considerable com-

plexity. Considering the limited range of correlations

possible by imposing a correlation on the {I Y and {Kn

sequences, the additional complexity may not be warranted.

If in spite of the complexities involved, one decides to in-

duce correlations in the coefficient sequences, the NEMA(l)

because it has two such sequences will yield a slightly larger

range than the EMA(l) model.
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3. P (X Xn+1 n

One of the possible advantages of a two parameter

model is the capacity for modifying P(Xn+1 >Xn) and, conse-

quently, the sample path behavior of the process while main-

taining a constant correlation. Since the correlation is a

function of a6, one can vary the values of a and while

keeping the product constant. The P(Xn+1 > Xn) can be calcu-

lated by addressing each of the sixteen possible combinations

of K and I values for Xn+1 and Xn, computing the probability

for each combination, and weighting the probability associated

with a given combination by the probability that the given

combination occurs. A sample calculation is provided and

complete results presented in Table III.C.3.1.

Example: We have

= E +I E

Xn K nEn n n- l'

Xn+ 1  K n+l En+l + In+l En,

P(K 1) = l-P(K = (1-)) -i -n n

P(In= 3) = l-P(I n=0) ai.

Let 1- - S and consider the case where1e - (1-0)0'

I = 3,K = 1, 1 = 3,K = 1.

1.20



Since the 1I } and (K } sequences are both iid and

independent of each other, the probability of this combination

of parameter values is simply the product of the individual

probabilities of occurrence. Hence the probability of
2 2

occurrence is a 2 Then in this case

P(Xn+ 1 X) = p (En+l+ En > En+6En-I)

= P(E n+ > (l-)E n+En-1) (III.C.3.1)

Now En+l is independent of Y = (l-)En+3Enl* Therefore, the

calculation required by equation III.C.3.1 is straightforward

once the density of Y is obtained. We have, with (x)
n-l

the p.d.f. of En (i.e. ex

P= [l E+ 3E -Y) f /P([I-]E+ =x)fE (x)dxP([- n n-l-- 0 n - n-1 n-i

y/3
0 P([l-]E y-xE = x) fE (x)dx

P( <Y/3 I' =X) fE (x) dx

0 0n-

-y/3  8x /

l ( - e T ee-Xdx
S0

2 1x-I-]/ e-X dx- e e dx

y/3 -x 1-2i-
-e-y i 3 _ e-  2 e r 3dx

~0
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( l- e - / - - - [ ] +0 [- -] d

Y 1-122a

=- i-ly'-i/ i 1-$ x-y -7
1 =/ I le d

Y-1-S -

P(Y<y) = - - [1-e +-(l-e )

Therefore, the density function of Y, fy(y), is
_( -S- )  (i\ey/S + (l_ ) 1 -y/( I-SB) 1 .

e(Y/'i e-e , for a Gaver and

Lewis [Ref. 2] gave the necessary and sufficient conditions
-Al 1-x2x

for a mixed exponential of the form 7 1X i
e  +I 2T 2 e 2 ,e

71 > 1, '1 + 72 = 1, and A1 < X2 to be a proper density

function. The condition is that

A1

7 < (i - 2.)-1 (III.C.3.2)
'2

In this situation we address two separate cases. The first

1 1-3
case is when 0 < S < In this case - > 1 and the

requirement is

5-

122
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And III.C.3.2 is satisfied. The second case is when < a < 1.s2
In this case- > 1 and the requirement is

_ 2 < -( ) }11

< [l-

!- 1-2Br
1

And III.C.3.2 is satisfied. If 8 = ., the density of Y is a

Gamma(2) density. Therefore, the p.d.f. of Y is a proper

density. This result can be used to complete the calculation

of P(X n+1 > X . Recall that equation IIIC.3.1 stated

P(X n +1 > X = P(En+1 > (l-B)E n+BEn-1 )

= p (n+l >

By conditioning on Y and using the p.d.f. for Y derived above

this is

(X >) = fP( >yIY=) fy(y)dy

P(Xn+l> Xn f0 (E n+l Y Y

e-[-(. -)(I)e-i I+(T )(l)e- Idy

0

- -- ) f (-V-) e dy

2-61 2- -25 e - dy
+-- )(7)0 f([Z)1e dy

123



P (Xn > Xn =_( )(+) +(_ ) )

P (Xn+I >X) = (2-8) (1+8) (III.C.3.3)

Table III.C.3.1 presents the results of the calculations for

all of the sixteen combinations of parameter values for Xn+ 1

and X.

When the P(Xn+1 > Xn) was calculated for various values

of a and , it was found that the values for this probability

varied from 0.44 to 0.54. Table III.C.3.2 contains the results

of these calculations for four hundred forty-one combinations

of parameter values. Although the variation in probability is

not large, it does represent an increase over the forward

EMA(l) model. In particular, the forward EMA(l) model can not

produce a probability greater than 0.50. Consequently, the

NEMA(l) model not only has a greater range of possible proba-

bilities, but also can produce probabilities greater than 0.50.

The implications of this greater range is that the NEMA(l) model

can address data sample paths that have a slight tendency for

either runs of increasing or decreasing values, while the

EMA(l) can only address sample paths that tend to produce runs

of decreasing values.

Examples of scatter plots and sample paths for three

sets of parameter values and positive correlations are given

in Figures III.C.3.l-III.C.3.6. Because of the relatively low

correlations possible and because of the limited range of

values for P(Xn+1 > Xn), differences among the figures are not
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TABLE III.C.3.1

K r~l "n .i I Probability of P(Xn~l Xn)
Pararreter Values
Ooccuring

1 1 S S s2

1

13.0 a 2(1-) 215

1 1 0 2 6(1-a) O

1 (1-c)S ~ ~ (i 5)ct 1+a)

1 1-) 0 0 2 (1-)(c) 1

1 (--a )O 21+a) I- 5ct

1a

3.(1--a)5 0 0 6(1- 6) CL(1- t)2 1

(l-t)5 1-00 0 (1- 6)t (i1t 23

(1(1-ct 0

2
(1-ctL)(27)

(1-ca)5 10 (1--S )6 a(-t% (14-cta) (-

(1-00)S 1 0 0 (1-6)6(1c) (1c) 2
(146 -ct

21-) 10 0 (166()21

(1-00)S (1-ct)a (1-6) 2t (2) 21t

(1-00)B (1-ct)a 0 (1*-6) 2 1(-a 1

(1--1)S C1-00)a 0 (1 2 (1-00 a1ct

1-ct)5 (1-00)a 0 0 (5 2 (1-00)2
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I

sharply delineated. However, differences can be detected,

particularly in the sample paths. In Figure III.C.3.1 with

an a value of 0.95 and value of 0.50 has a P(Xn+1 > Xn) =

0.44, the lowest value for this probability. Since this pro-

duces a slight tendency for runs of decreasing value, the

a-umber of extreme values (i.e. greater than 3.0) is two.

In Figures III.C.3.2 and IIIC.3.3 the P(Xn+1 > Xn) is 0.50 and

0.54, respectively, with a corresponding increase in

the number of large values. This trend is more

difficult to detect in the corresponding scatter plots.

Figures III.C.3.7-III.C.3.12 provide sample paths and scatter

plots for the same a and S values as previously displayed,

but with antithetic innovative sequences (see III.B) and

consequent negative correlations. Although the negative

correlation is evident, trends in these figures are difficult

to detect. The extremes of sample path variability produced

by the NEAR(l) process [Ref. 81 are not reproducible with the

NEMA(l) process. This may be attributable to the restricted

range of possible correlations.

4. Laplace Transform of Sums

One aspect of the EMA(l) model is its analytical

tractability. This is evidenced by the ability to derive the

Laplace transform of sums by a recursive relationship given

by Lawrance and Lewis [Ref. 5]. This tractability carries

over to the NEMA(1) process. The Laplace transform is useful

in obtaining quantities which are of use in analyzing point

processes, namely the intensity function and the spectrum of
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F- counts. These quantities are derived for the NEMA(l) process

in subsequent sections from the results obtained here.
1- =

With Xn defined as in III.C.l.5, let -
r -sT

and (l-a)a = y. Further, let X = Tr and T (s) E(e r)

i=l r
Then we have

Tr = X 1 +X 2 + ... + Xr  (III.C.4.1)

KIE 1 + 1 1E 0 + K 2E 2 +1 2  1 + + KrEr + IrEr- 1

= KrE r + (Ir+Kr-1)Er 1 + ... + (12 +K)E 1 + 11 E0

Then letting L. = Ij+ I +Ki, j = 1,2,...,r-i and using the

mutual independence of the iid sequences JK }, {I }, {E nn n n

DT (s) = E(e ) (III.C.4.2)
r

-sK [KEr Lrir + . .. II I0

= E(e r r r-lEr-1+..+L1 E1+11E01

-sK E -sL E -sLE 1  -i 0

= E(e r r )E(e r-l Er-l ... E(e )E(e

-sK.E. -sI .E. -sL.E.
Now let TiK(S) = E(e y ), 'I(S) = E(e T , 'L(s) = E(e 3 ).

Then

PT (S) = l'K(s)TI(s) [TL(s)] r - I  (III.C.4.3)
r

To evaluate these quantities note that
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K 1 with probability 5,

Ky with probability i-6.

Then

-sK E
TK (s)= E(e j)

-sE. e-SyEj)
= SE(e 3) + (I-6)E~e J

=K(S)  = (S) + (l6)(E( ,S)'  (III.C.4.4)

1
where E (s = +-is"S

() - + (1-6) (III.C.4.5)

K 1+s l+ys

Also

with probability (x,

I 0 with probability l-a,

so that

-SI.Ej) -sBE.
?i (s) = Ee = cE(e + (i-a) (III.C.4.6

(III.C.4.7)I ( S)  = +-- + i - .
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To evaluate TiL (s) note that

a with probability at6,

6+Y with probability cdl1-6),

L

1 with probability (1-at)6,

Y with probability (-t 16

Therefore

-sL.E.)
TL()= E(e 3

= ct6E(e j) +a (1- 6) E(e-

-sE. -syE.
+ (l-ct)SE(e 3)+ (1-t) (1-6)E(e J)

T (S a [+1S +(l16 ) ([13+VIs) + (1-at) 60(s) (III.C.4.8)

+ (1-c-Y)

Using the results of III.C.4.3, III.C.4.4, III.C.4.7, and

III.C.4.8

t= S t6 E(s)+(l-6 ) E(fts)]x[tOECs)+(lct)I (III.C.4.9)
r

+ (1Et (1 ~(Ys)]rl1
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This extends the result (3.7) in Lawrance and Lewis (Ref. 5]

to the NEMA(l) process.

5. Laplace Transform of the Distribution
of Counts

The Laplace transform of the sum is useful in deriving

the distribution of the synchronous counting process of the

number of events that occur in (O,t] when the origin is estab-

lished at the occurrence of an arbitrary event. The number

of events in (O,t] is related to the distribution of a sum by

the relationship

f < r iff Tr > t, r = 1,2,... (III.C.5.i)Nt  ...

where N f is the number of events in (Q,t] and T is the sumt r
of the first interevent times. Thus

fP(N t= r) =F r(t) - F r C t)

where F r(t) is the distribution function of T r The proba-

bility generating function of Nt can then be written as

Nf

' f(z;t) = E(z t)

~r f=Z P(N = r)
r=0

- Zr[F (t) - F r+l(t)]
r=0

+ (Z-l) I zrlF r(t).

r=l
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Let Yf(z;s) be the Laplace transform of Tf(z;t), and f (t)

the Laplace transform of f r(t), the p.d.f. of Tr . Then

(Z;S) (1 zr-lf*(t) (III.C.5.2)

s s r rr=l1

Using the Laplace transform of the sum from III.C.4.9

f* s1 (l-z)s z z[ 64l E(S)+(1-6)E(YS)

r=1

X [ $E (as) +(1-a) I× [a6 0E ( [a+l S) +a (1-6) OE N[ S s)

+ (I-at ) e i e t n(tio o t-6)h Eo(ys)nr-1

f(z;s) as tE(S)i+ (1- ) E w(it S)re[s eE ( S) (III.C.5.3)

de(ivativat z [=$ E ( [ hen+1e-)tiai g i es)

+ (l-0t) t(S) + (1-00 (1-6) E (YS)]

1where IE(S) = +"
If mrf(t) is the intensity function of the point proc-

ess, then m f(t), its Laplace transform, can be obtained by

differentiating III.C.5.3 with respect to z, evaluating the

derivative at z = 1, and then differentiating with respect to

s. These steps, when taken, produce a series of tedious

calculations which produce no analytical insights. The result

of these steps is
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)

l+l+32c$)+335 2  2 2 2 2

l+ (i+4a-2aa) S+ (3$+5a2-2aa-5a8 +aa 2 ) s2

* + (282+233-3ct3 2-3a83+a232 + 23)s3
m (B 2a3 3a2_ 2a 2 a2+ 2 2 2 2s 3 (III.C.5.4)f s+(l+4-3a+a 2 2)s 2+(3a+5 2_2 a-72 +3a 2 2)s3

+(2 2+23 -3 2 -3a2 3+a2 2+x2a 3 )s4

This result can be verified in a number of ways. First, when

a = 1, the process is the EMI(I) process and, hence, the formula

must reduce to (4.2) given in Lawrance and Lewis [Ref. 5] with

X = 1. Second, when a = 0, the NEMA(l) process reduces to a

Poisson process and the formula under this condition must

reduce to the Laplace transform of the constant intensity

function of a Poisson process with rate 1, 1. Third, with

3 = 0 the NEMA(1) process is again a Poisson process. Finally,

using one of the Tauberian Theorems, lim mf(t) = lim sm(s) = 1.

We take these cases in turn. First, when a = 1

l+(l+48-2a8)s+(3a+53
2-2a-5a62 + 2 22)s2

m*(s) +(2 2+26 33a 2 3
3+a2 2+a 283 )s3

mf(s

s+(l+46-3a+a 2a2 )s +(3B+5 2_2a-7aa2 +3a 22 )s3

+(2 2+23 -3 3a-3 +a 23 2+a 2a3 S4

reduces to

* (i+(l+26)s+(6+32 )s 2
m4(s) 2 2 3

s+(l+S+2 )s +(3+2 )s
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7J

*(i+3s) (+ [(+S]s)
mf~ 2mf~) =s( l+s] [I+(3+32)s] )

(i+8s) (1+[l+8]s) 1I

(l+8)s(l+s) ( 1 +s)

which is the result of Lawrance and Lewis (Ref. 5] with A 1.

In the second case with a = 0

* I l+(1+48)s+(38+53 2 )s (2 2+263 ) 3

f s+(1+48)s 2 +(33-+5a 2 )s3 +(22 +2 3 4

1
S'

the Laplace transform of a Poisson process with rate of 1.

In the third case 3 = 0, so

* l+s 1mf(s) = - =
S+s

again the Laplace transform of a Poisson process with a rate

of 1.

In the final case apply the Tauberian Theorem

l+(il+4-28)s+(3+5a 2 -2a6-5a 2 +2 3 )s 2

lir smf(S) (23 2+28 -3S2+c25 2+c2 3 )s

s-0 fi+(l+4a-3a8+2 3 )s+(38+5 -2_a8-7a32+3 22 )s

+(23 2+25 3-3aS 2+2 3 22 83 )s3

as required.
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6. The Spectrum of Counts

For the statistical analysis of series of events the

most useful quantity associated with a process is the

(Bartlett) spectrum of counts. The spectrum of counts,

g+(w), is the Fourier transform of the covariance density of

N f(t). It is related to the Laplace transform of the inten-f*

sity function, mf(s), by the relationship derived by Cox and

Lewis [Ref. 29]

g+(w) = (l + mf [iw] + mf[-iw]).

We now derive this for the NEMA(1) process using III.C.5.4.

In that expression for mf(s), let

a1 = 1 + 46-2a6, (III.C.6.1)

a =3~ 52 -
2 6 52 2c 2a 2 = 26- 5a, +2a (III.C.6.2)

2 32 3 2 2 2 3
a 3 = 22 + 2 3 - 362 - 36 + a a + c2L3 (III.C.6.3)

b I = 1 + 4S - 3a + a22 (III.C.6.4)

b = 36 + 562 - 2aa - 7a2 + 3a22 (III.C.6.5)

b 3  = 282 + 2 - 3S2 - 3aa 3 + c2c2 + 23. (III.C.6.6)

Then
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1+a 1s+a 2s2 +a 3s3

f s+b 1 s 2+b 2s 3+b 3 s4

Recall that A =1 so

I 1+a 1 (iw) +a 2 (iw) 2+a 3 (w)3
7T(w -[1+ 1 i 2 +b2i)3+ 3 i)4

+1+a 1 (-iw) +a 2 (-iw) 2+a 3 (-iw)3
+2 3 4]

-iw+b 1 (-iw) +b 2 (-iw) +ib 3(-iui)

[i~ 1(w)2+ 2 U)3+ 3 i)4

[iw+b 1(iw) 2+b 2 (jw) 3+b 3 (iw) 4

_ -iw+b 1 (-iw) 2 +b 2 (-iw) 3+b 3 (-iw)4

g[1wa I [wb(iw) 2(i)2+ 3 4w 3II..67

[i~b1 iw 2+b 2 (iw) 3+b 3 i) 4

2 3 4x<[-j+b 1 (-y) +b 2 (-iw) +b 3 (-iw)

2 3

[1+ xr~ 1 (-w) 
2 +() +a 3 (-iw)

x~w~ 1(i) + 2 U)3+b3( 4
[iw+b 1 (iw) 2+b 2 (iw) 3+b 3 (w) 4

x[i 4 +b 1 (iw) +b 2 (i) +b 3 ( w 4
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Consider the first term with numerator and denominator the

same. Let the denominator = D.

D = [iw+b 1 W) 2+b 2 (iW) 3+b 3 (iW) 4 [-iw+b1 (-iw) 2+b2 (-iw) 3+b3 (-iw)4

1 2 3 1 142 -ibl 3 -b24 +ib3 5 +ibl, 324 -iblb2w5 -blb 3w 6 -b 2w 4

5 26 7 5 6 7 28
+ib1b2 w +b2w -ib2b3W -ib 3w -blb 3 w +ib 2 b 3w +b3W

= i(-bIw +b 3w +b1 W -bIb 2w +b 1b 2 L 2 3 +b 2b 3w -b 3W )

2 4 24 6 4 26 6 28
+(W -b2 w 4 +b -bb 3 -b 2 w +b 2  -bb 3 w +b 3 w 8

2 2 2 4 2 6,
= [1+(b -2b2 1w 2+(b2 2b b3]w +b 3 . (III.C.6.8)

Let

S 2 24 2 6X = l+(b 1.-2b2 )w 2+(b2-2blb3) +b ,

where bI , b2, and b3 are defined by III.C.6.4, III.C.6.5,

III.C.6.6, respectively. Then

D = w2X (III.C.6.9)

Consider the numerator of the second term in III.C.6.7 and

call it N2. Then
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N2 = (1+a 1 (iw)+a2 (iW) 2+a3 (iW) 3 ] [-iw+b (-iw) 2 +b2 (-iw) 3 +b3 (-iw) 4]

-iw-b 2+ib 3+b 4 +a 2 -a1b W3 abw 4  5 3
= -i -bl +i2 +~a ala -iabla111l2 +ialb3 W w+sia2c

4 5 6 4. 5 6

+a 2 b 1 W4_ ia 2b 2w -a 2 b 3 -a 3  + ia 3 b1 w +a 3 b 2 W -ia 3b 3w7

N2 = i(-,w+[a 2-a1 b1 +b2j3 +(aIb 3 -a 2 b 2 +a 3 b1 )W 5-a 3 b 3 w 7 ) (III.C.6.)

+(al-b 1 ) 2+(a 2 b 1 -a 1 b 2 -a 3 +b 3 ) 4+(a 3 b 2 -a 2 b 3 )w6

where al, a2 , a3, bi, b2 , and b3 are defined in III.C.6.1

through III.C.6.6 respectively. Consider the numerator of

the third term in III.C.6.7 and call it N3. Then

N3 = [l+a1 (-iw)+a 2 (-iw)2 +a 3 (-i) 3 [iw+b1 (iw) 2+b 2 (iW) 3+b 3 (iW) 4

= iw-b1 
2 ib 3 +b3w 4 +a 2+ia1bW 3 a b 4 _ia1b3 5-ia2

3 5 7N3 i(.j-[a 2 -aIb 1 +b 2 w- [alb 3 -a 2b 2 +a 3bllw +a 3 b3 ) (III.C.6.ll)

2 4 6+(al-b 1) )W +(a 2 b 1 -aIb 2 - a3+b 3) +(a 3 b 2 -a 2 b 3) )w

where al , a2, a3, bi, b2, and b3 are defined in III.C.6.1

through 1II.C.6.6, respectively. Note from III.C.6.7 that

all terms in the sum have the same denominator. Use III.C.6.10

and III.C.6.11 to determine the numerator of the second and
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third terms and call it N. Then

N i[-w+(a2 -a1b1+b2 )w 
3 +(a 1b 3 -a 2 b 2 +a 3b1)w -a 3b 3 w

7 +l-(a2 -alb 1 +b 2 )W 3

-(a1 b3-a 2b2 +a3b1 )W 5+a 3 b 3 w 7]+(a1-b1 )W 2 +(a 2b 1 -a 1 b 2-a 3 +b 3))W 4

+(a 3b 2 -a 2 b 3 )W 6 +(a 1 -b 1 )W 2 +(a2b-a1b2-a3+b3) 4 +(abb)2-a2b3)W 6

= 2[(a1-b1 ) W 2 +(a 2 bI-alb 2 - a 3 + b 2 ), 4+(a 3b 2a 2b 3)W 6 .

Let

y = (a 1-b 1 )+(a 2 b 1 -a 1 b 2 -a 3 +b 3 ) 2 +(a 3 b 2 -a 2 b 3) 6  (III.C.6.12)

Then

N = 2 y (III.C.6.13)

Using III.C.6.7, III.C.6.8, III.C.6.13

1 .22

g + ( ) W -2 - - + 2
Sx W x

- X+ y) , (III.C.6.14)
1 xy

where x and y are defined in III.C.6. 9 and III.C.6.12,

respectively.
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Figures III.C.6.1 through III.C.6.3 show the results

of the calculation of the (Bartlett) spectrum of counts. In
1

presenting the results the constant I in III.C.6.14 was ig-

nored. Figure III.C.6.1 shows the spectrum of counts for the

same a and values that were used for the sample paths and

scatter plots of Figures III.C.3.1 through IIIC.3.6. This

figure also shows the variation in the spectrum of counts as

the P(Xn+ > Xn ) varies from its lowest to highest values.

Figure III.C.3.2 holds the P(X n+> X n) constant and varies

the correlation. Since the spectrum of counts for a Poisson

process is a constant one when X equals 1 and the constant

1L is ignored, the correlation can be viewed as a measure of

the process' departure from a Poisson process. This

divergence as a function of the correlation shows clearly in

this figure. Figure III.C.6.3 holds the correlation constant

and varies the P(Xn+> Xn). The slight variation in the

spectra shows that while the spectrum of counts does vary

with the P(Xn+l > xn), the correlation plays a more dominant

role.

The analysis from the Laplace transform of sums in

III.C.4, through the Laplace transform of the intensity func-

tion in III.C.5, to the spectrum of counts in this section

can be performed using the correlated {E }, tE sequences
n n

of III.C.2 and thus for negative correlations. Details are

not given.
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7. Joint Laplace-Stieltjes Transform of Xn and Xn+ 1

Because the NEMA(l) process is, by construction,

only one-dependent, all of the second-order properties of

{Xn I are contained in adjacent pairs {XnXn+l}. In previous

sections quantifiers of the distribution of {Xn Xn+lI such

as pj and P(Xn+1 >Xn) have been derived. Here we give the

Laplace-Stieltjes transform of the joint distribution. One

could, for example, study the effect of the two parameters

from this result by deriving directional moments.

The joint Laplace-Stieltjes transform of Xn and Xn+ 1

can be calculated by considering each of the sixteen possible

combinations of parameter values for Xn and Xn+I, as was done

in III.C.3. Let l- = S'' n
-SlXnSX 1_71 7 X n ' 2

E(e n+, and 0E(S) = 1 Then
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-s E +BE - ( B

(s (-tc6 6E (e
1n - 2n)

+ c(-t)6E(e En+En- 1  ~

+ (1-ct) (1-a) 66E (e

+ aad(-6)(i -S 1)E nE 
n11 S En~ a n]

(e-S1 yEn- S2 E n+l

+ ct(i-6)'5E(e - En+EnIIS2[y ~+En

-s E n-s (E n+En

+ (1c~t166Ee

-sI[ES2 a n-i -2(y n~l+En

+ (1c)(1)-6)E(e n 2 E

+ (1-0t) ct(1- 6 ) (-6 E(eE n1e2 1 ~

+ 41-ct) (1-6) (1-6)Ee
1

e

-s 1yE n- s2y
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+ ai1-ca)560E(s1+8s 2 )1PE(s 2 )

+ (1-ai) (1-a) 6 4E (sl) E(s 2)

+ cia6 l6O(Yl 2)ESl ~2

+ a(1-00 )(1-6) PE (YSl+ESS) E (S2)

+ (1-as) (1a 16 E ,s)qE(2

+ CL166Es~s)EO EC 2

+(s1 P(B1)PE(Ys2

+ o ( 1-CA) (1- ) 6 E (s I+s 2YPE (-fS 2 )

+ (1-,A) (1-(x) (1-6) 5 E (s1) EC(Y S2)

+ oa (1-6) (16) ,S ) )E(Y2

+ (-a(1-6) (16)'E((S)t l E(Y2

+ ~(-)(1-6) (1-6)4E(,YSl+ s 2 )YYS 2 )

+(1-0) (1-0) (1-6) (1-6)(DE (Ys1) E(YS2)
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I (SlS 2 )  = [6 E(2) (I6) E(YS2)]

X[aa6 E(Sl+s2)QE(s I ) + (1-a)a 6&E(Sl) PE(asl)

+ o(1-) 6 E(Sl+aS2 )  + (1-t) (l- )"E(sl)

+ c(l-6) E(ySl+6s 2 ) E( Ss)

+ (1-a)ca(1- 6 ) E(YSl) E(3s I ) + 0C(l-a) (1-) E(Ysl+Bs 2 )

+ (-a) (YS

X n (sis 2 ) = [E(s2)+(i-) E(Ys2) H (III.C.7.1)

x [LOE ( Ss ) +(l-0 ]x [OL6( E(sl1+BS 2) + ( 1- 00 6 E (Sl)

+ A (1-6) E(CySl+as 2) +(l-.A) (1-6 ) E(0 SI ) I

For the special cases of the EMA(1) process, III.C.7.1 reduces

to the results given in Lawrence and Lewis [Ref. 51.

D. THE MOVING MINIMUM MODEL

1. Introduction

Another possible scheme that can be used to generate

one-dependent sequences of random variables with marginal

Exponential distribution is the so-called minimum model. With

this model the (X n } sequence is generated by taking the moving

minimum value of two Exponential random variables. The proposed

generation scheme is

X' - MIN(En bEn-), (III.D.l.l)
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where (X , n = 1,2,...} is a sequence of random variables
with marginal Exponential distribution, {En, n = 0,1,...} is

an iid sequence of Exponential random variables with unit

mean, and b > 0. This will produce an {X'} sequence with a
b+l b

rate of -- and an expected value of b= This expected

value produces one difficulty since it is a function of the

parameter, b. This complicates comparisons between results

with different parameter values and decreases the value of

scatter plots and sample paths. However, this difficulty
b+l

can be easily removed by multiplying the {X'} by The

generation scheme then becomes

.b+la

X _ b+' = MIN( [---1E, [b+l]E , (III.D.I.2)
n b n b n -

with "E ; and b defined as before. The {X has a rate ofn n

one and, hence, an expected value of one. This facilitates

comparisons for different parameter values with the NEMA(l)

discussed in III.C which produces random variables with unit

means.

The investigation of the moving minimum model is moti-

vated by the previous result in III.C.2 that linear additive

models have a constrained range of serial correlation. The

hope is that the non-linearity of the moving minimum model

will obviate this constraint. The minimum scheme has been

used by Tavares [Refs. 22 and 30] to generate first-order

autoregressive exponential processes and by Marshall and

Olkin [Ref. 31] to generate correlated bivariate Exponential

variables.
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2. Correlation Structure

The first-order serial correlation can be computed

by the following approach

-b+l

E(Xn+IXn  E([MIN([--- n+l'n

(MIN (1bb--1]En, (b+1]n ] E M.
b n n-i

The terms inside the expected value can be made independent
by conditioning on the value of En . The E(X n+X n ) is then

found by multiplying the conditional result by the density

of En , and integrating. Implementing this approach we have

E(XnX) 0 E([MIN--E [b+ly)]0

x (MIN ( [11-'l] y, [b+l]E I I E n  y)e-Ydyb- n- n y(MN]

00

E(n+X f (E[MIN([b]En+ I [b+l]y)]) (III.D.2.1)
0

b+l.
x(E[MIN([ -by, [b+l]Enj)I)e-Ydy

The expected value of the minima can be calculated as follows:

bx

+ f (b~i~(b+l)e d

(b~)) y! b+
.bM, ,E (b+l)y]) f x( )e 6dxE MN - - n+1 'b+ 0

CO bx
b e T-[d+ f (b+l) y (~(b+-T)e d
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bx bl

0

(b+1)y bx
+ f e- Tdx + (b~sl)yeby

(bly bx
= (~ly -by + b~ 0 l)f b i)eb+l d

- ( b + 1 ) y0 bb + s ~ r ed

+ (b+l)ye-by

(MNCbR+) b ~ l (III.D.2.2)

b+1 (b-s-)y/b 1 -

E (MIN (+) y, (b+) E 1 ) f X( 1 ~w)e bldx

x
00 (______ 1 STTE_++(b s-1) )e dx

(b-s-)y/bb b+

A x

=-xe +J e dx
'0 0

(b+l)y -y/b+ b e

(b+)y (b1)/b1 b

+ (b1yeY
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E(MIN[(-b)y,(b+l)En- 1 ]) = (b+l)(-ey/b). (III.D.2.3)

Using III.D.2.2 and III.D.2.3 in III.D.2.1 produces

E(Xn+lX) = f (i) (1-e - by) (b+l) (l-e-Y/b) e-Ydy
0

(b+l) 2 b+l (b+l) 2
b b (b+l) + 1

b ( l+b+!)

2b

(b+l) 2

b2+b+l

Therefore, since E(Xn ) = 1

n2

COV(X X ) (b+l) b
b 2+b+l b 2 +b+l

and

bCORR (X n+l, X n b=+~ (III.D.2.4)

Thus the model allows a range of correlations from

0,1. The minimum value is achieved when b is zero or in

the limit as b tends to infinity. The maximum value is achieved

when b is equal to one. An interesting aspect of the correla-

tion structure of the moving minimum model is that reciprocal

values of b produce equal correlations. This is a similar

kind of "invertibility" found for the other moving average

models discussed in III.C. The range of b could be restricted
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to the interval [0,11 without reducing the possible range of

correlations. However, doing so, as with the NEMA(l) model,

would ignore the fact that in the non-normal case character-

istics other than correlation may be different in the case of
1

b and ." Also, as is the case for all the first-order moving

average processes addressed in this paper, the correlation

for lags greater than one are zero. So the study of correla-

tion structure is limited to the study of the serial correla-

tion with lag one.

3. Negative Correlation

The range of possible correlations can be extended in

a fashion similar to the NEMA(1) model (see III.C.2) by the

use of correlated or antithetic variables. Using this approach

the generation formula becomes for antithetic variables

X MIN([b-I]E [b+l]E (III.D.3.1)

where all variables are defined as in III.D.I.1 and {E'Sn'

n = 0,i,...; is generated from the (E n, sequence using the
-E

relationship En  -ln (l-e n) Note that this implies that

*E'; is also iid Exponential with unit mean. Again

E(XXn) = E[(MIN[(fb1)En'(b+l)E'])

,b+l, n n 1)

K (MIN [ -)E (b+l)E'n)]
b n+l n

and conitioning on the value of En, multiplying by the density
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of Enand integrating produces

E(X00 b+1

[MIN([br]E n+l' ,b+llIEA) I En y)e~d

E(X X~ 1  f 00(E[MIN([ bIl y,[b+l]E M)1 (III.D.3.2)

n n~l F-b l

The first expected value is identical to III.D.2.3. Thus

E bMN +l ), blEn-, 1  (b+l) (1-e-y"'b) (III.D.3.3)

The second can be calculated as before.

b n+1'

bx

+ f 00-(b+l) ln(1-eY) e -bldx

- (b+1) ln (1-e)

=eST +bll - (b+l) ' bll~- b b+ld
-xe + -B-) f(b+l )e d

-(b-i-) ln(ley )e bln(le)
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I. I,

E (MIN [(11-'-E ,-(b+l) in (1-e - y )])b n+l

(b+l)n(l-e-Y)ebln(l
- e - y ) + (bE) (l-ebln[l - e - y )

bln (1-e - y )
- (b+l)ln(l-e-Y)e

E (MIN[( bbl )En+ - (b+l) in (1-e - y . )
b +l

()(1- [1-e -Y]b) (III.D.3.4)

Substituting III.D.3.3 and III.D.3.4 into III.D.3.2 yields

00

bb+l

Cb--)f e-dyle-Y fb dy

b l 2 ' b-y -y b-l)ed
b 00

0

b+l,2 -I+)

+ (b-f) e S (l-e-Y)bdy
0

The first two integrals are trivial. In the third the change

of variable z = (1-e- y ), dz = e-Ydy makes that integral straight-

forward. In the last integral, the change of variable u =e
- y

du = dy makes that integral recognizable as the integral of
U

a Beta random variable. Using these changes of variables and
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making the appropriate changes to the limits of integration

produces

.b+l,2 b+l b+ 2f  + -(+ bE(Xn Xn+l (--- -67 I zdz + f u (l-u)b(-!)0 b U

bl b+l b+l + f ul/b (lu) bdu
-1:7 - b 2 0

P (i.) F (l+b)

1

r (2+b+u)

l ()br(b)

(b+b+) (b+E) I (b+)

21
b F(~l) (b +)7 b-:

Then

21
COV(X~ ,X )nn+l 2 2 1 -

COV(XnXn+I) (b2+b+l) (b2+1) F (b+l, ) 1

and

21
CORR(X ,Xn+I) 2 - 1 (III.D.3.5)

(b 2+b+l) (b2 +1) (b+ )

Like the expression for positive correlation, this

expression is also symmetric with respect to reciprocal values

of the parameter. It attains a minimum value of minus one-

third when the parameter value is one. Graphs of the
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correlation as a function of the parameter b for both posi-

tive and negative correlations are provided in Figures III.D.3.1

and III.D.3.2, respectively. Unlike the NEMA(l) model which

requires an additional parameter (see equation III.B.6) to

achieve a full range of negative correlations, the moving

minimum model can achieve its full range with the single

parameter b and an antithetic sequence {E'}.
n

4. Joint Density of X. and Xn+ 1

Calculation of the joint density of Xn and Xn+l is

possible using a conditioning argument to determine

P(Xn <XE n=z) and P(Xn+l<YEn = z). These values along with

the probability that En takes on a given range of values are

sufficient to determine the joint distribution function of Xn

and Xn+I . The form of the distribution will vary depending on

whether one is above or below the line Xn+ 1 = bXn . The joint

density, where it exists, is determined by differentiating

the distribution function.

From III.D.1.2 we have

Xn = MIN( [ ]E [b+lEn)

Then

(1 if (bSl)z < x,

P(Xn <xE n= z) x (III.D.4.1)

1-e b+l if b+l

168



~~ L1

C-

~IcnI -LJ

CZ

LDLn

U-u

C

169



SC

LoLL

(LLI

Ln

t2-*0

170



The first result in the above is obvious. To justify the

second, consider

bxxP (X < x1E Zb> P((b+l]EiX
n b E-llX

P(E < )

x

.bb+].

Since Xn+ = MIN ([b+]E ,[b+l]E ), then

1 if z < b-Y---b+l'

P(Xn+l<YIEn = z) = bl (III.D.4.2)

1- if z > b+l "

To consider the joint distribution, note that when

< (i.e. when you are above the line bx = y), the range
b-i- b+ 1

of possible z values can be broken up into three regions. See

Figure III.D.4.1. Then, since En is Exponential with unit

mean,

P(z REGION 1) = P(z < bx

bx

P(z z REGION 1) = 1 - e . (III.D.4.3)

P(z REGION 2) =P < z <-y-~ b+l'
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bx-b+" eb+--'
P(z E REGION 2) = e -e . (III.D.4.4)

P(z E REGION 3) = P(z >b)

b1T)

P(z i REGION 3) = e b+l (III.D.4.5)

Now by definition

P(Xn<XXn+l<yIz E REGION i) = P(Xn<xjZ E REGION i)

x P(Xn+lyiz E REGION i) (III.C.4.6)

because when conditioned on the value of En , these probabili-

ties are independent. Using the above equation, III.D.4.1,

III.D.4.2, and the definition of the regions in Figure III.D.4.1,

P(Xn <X,Xn+l< yz E REGION 1) = 1 (III.D.4.7)

x

P(Xn<X,Xn+l LYZ E REGION 2) = 1 - e (III.D.4.8)

x _by
P(Xn<XXn+l<yz £ REGION 3) = (l-emb+)(le b+l) (III.D.4.9)

Using the results of III.D.4.3 through III.D.4.5 and III.D.4.7

through III.D.4.9 we can compute the joint distribution of Xn

and Xn+l when y > bx by using the relation
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3
P (Xn< X, X~lY P =<X

i=l
n -n~lY) -~ nx~l<Ylz E REGION i) (III.D.4.].O)

x P(z E REGION i)

bx x bx

= l(l-e b+l)+(1-e b+)(e b+_ e-Y/b+l

x by
+ (1-e - b+ (l-e b+1 e-y/(b+l)

-bx bx _ _ (x+y)
1-e b+1+b+l -e-X -e b+1+e b+l +e b+l

(x+y) 1b / x [l y
- e b+1 _e-Y+e

x

P(X <X,X 1 y) = l-ex e- +e Y (III.D.4.11)

Similarly, when y < bx (i.e. when you are below the

line bx = y), the range of possible z values can be separated

into three regions. See Figure III.D.4.2. Then

P(z REGION 1) = P(z _

-b+lr
V

P(z REGION 2) = 1 - e , (III.D.4.12)

P(z REGION 2) = Pyb+< z -b

y bx

P(z REGION 2) = e b+1 - e b-l (III.D.4.13)

P(z REGION 3, = P(z > bx

b+l
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bx
b+-

P(z REGION 3) = e (III.D.4.14)

Using III.D.4.1, III.D.4.2, III.D.4.6, and the definitions of

the regions in Figure III.D.4.2, the following results hold

for the given region.

P(Xn<X,Xn+l<Ylz z REGION 1) = 1 (III.D.4.15)

_by
P(Xn<X,Xn+l<Ylz -E REGION 2) = 1 - e b+1 (III.D.4.16)

P(Xn<X,Xn+l.ylz E REGION 3) = (1-c b+l (III.D.4.17)

x

×(1-e b+

Combining III.D.4.10 with III.D.4.12 through III.D.4.17 yields

for bx < y

P(X n < ,Xn+ <y) = -eY X+e b+ (III.D.4.18)

x -
Let F (x,y) = 1-e-X-e -Ye, the distribution

function of X and Xn+ 1 when bx < y; and let Fl(x,y) be the

joint density ,,E Xn and Xn+ 1 when bx < y. Then

x
1. 3 -Y 1f (x,y) = F 3y -[l-e-X-e -Y +e

x
3 [-ye l

= e Y-e - - - y ]
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x -Y

fl(x,y) = (- )e bx < y; x > 0. (III.D.4.19)

For bx< y, the distribution function, F is

l-e-Y-e-X+e - b+l . If f2 (x,y) is the joint density of Xn

and Xn+i when bx > y, then

2n 2-3 3+1ex~b1 -- by

f2(x,y) - F(x,y) - e-Ye-X+ex Dy Ox ay

-Lx e-Y- (b--) e

by2b -X-b+l

f 2(x,y) (-)e y < bx; y > 0. (III.D.4.20)
b+1

Note that there is a positive probability that the

point (Xn ,Xn+I) lies on the line bx = y. This probability

can be computed as follows. We have

x MI b+l

X b+l

The point (Xn,X ) lies on the line bx y when Xn -- )E
n n+l

and Xn+1 = (b+l)En. Now

P(X n  [b+l]E nX lb+IE)
n b nb+l1

P <bblE bl < [__Enl
= P([-Eb n b+l]Enl; [b+l]Eb+
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The events in the right hand side can be made independent by

conditioning on the value of En . Then

P(X n = [b FEX [b+l]E)
b+l b+l

(f -0( -]y< [b+lIE-_ , s[b+ly< [--E-E-n+lE =y)e-ydy0 -- b-n n

f fP(En~ Y)P(E 1 by)e-ydy

1 01 f 1 - (bT)e ydy
0

P(X +l [b+l]E ) = b (III.D.4.21)n [---En;Xn+l n b2+b+l"

Because there is a positive probability of lying on the line

bx = y, the moving minimum model can be said to have a line

degeneracy. An important implication of the positive proba-

bility of (Xn IXn+I ) lying on the line bx = y is that the

moving minimum model will produce runs of values of constant

ratio b. The values of {X } in these runs will be decreasing,
n

equal, or increasing for b less than, equal to, or greater

than one, respectively. The length of the runs will be geo-

metrically distributed with parameter 2 b for the positive
b +b+l

correlation case. It was this kind of degeneracy in the

Exponential autoregressive model, EAR(l), that proved to be

one of the model's major weaknesses. The degeneracy also
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occurs in the Tavares autoregressive model and the bivariate

Exponential pairs derived by Marshall and 01kmn.

The probability of lying above or below the line bx = y

can be easily found by integrating the appropriate joint den-

sity over the area desired. Thus, for bx < y

P(lying above bx= y) = f f f 1 (x,y)dydx
0 bx

x

0 bx I(S-JIe dydx

0 b x

f 1 )eb+l e-bx d
0b+l

P(lying above bx= y) = 2 1-(III.D.4 .22)
b +b+.

Similarly for bx > y

P (lying below bx y) f 00f bxf 2(x,y)dydx
0 0

00bx b -lx-hdd

0 0

b2
X bxl

f e (1-e )dx
0

1 b+l

P(lying below bx =y) = 2 bCIII .D.4 .23)
b +b~-l
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5. Conditional Expectation and P(X > X
n+l 'n

Besides the correlation coefficient, there are two

other chamacterizations of the joint distribution of X andn

Xn+ 1 which we have considered. They are the conditional

expectations and the P(Xn+ > X n) . Both of these quantities

can be derived by considering the four possible sets of values

for Xn and Xn+l, computing the probability of each set occurring,

and weighting the conditional expectation or probability by

its probability of occurrence.

First, the probability of occurrence for each set of

values must be calculated. Consider the case where Xn = (b)E
n b+l

and X (-)En.

b+l bb+l
P(X [--En,X = [--]E

n b n' n+l b n+l

b+l - b+l

By conditioning on the value of En/ the events on the RHS

become independent. The calculation then proceeds in a

straightforward way.

,bX[ +l'] -Xb+l]EP(Xn = [-i-]En,Xn+1 = [L-l-JEn+1 )

.b+l. ob+l -

0

0P(E Y-) P(E <by)e ydy
0 n-I. b n+l-
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P (X~ (t+-' En b+lE

1 1 + ~

f e dy - fe dy

b b
b-1 2b +b+l

P(X = ~ EX x b _l = E_____ iI~ 1n bn' n+1 [-]El (b#1) (b 2+b+1)

The second case when X=(-+)E and Xn+ = (b+1)E hasn b n nn

already been computed. The result is III.D.4.21 and is re-

peated here as

P(X = (-!--]E 4 = t[b+IIE 2b (III.D.5.2)

n b n ~l n b+bl

The third case is when X (b+l)En~ and Xnl ()n nl ~l b n+]7

Here we proceed as in the first case.

n +l'X b[-Y

=P([b+lIE < [k-+i]E ,[L~I]E 1  [b+l]E)

=f P(b~] [!+'y !-'= bly y)e-ydy

=f 00P(E 1 <Y) P(E ~1 by)e-ydy
0 nl-b nl_



P (X [ b+1IE ,X [t-]En n-i' n =b n+i

=j e-ydy fe b dy -fo b+)ydy +fe bady
0 0 0 0

b I1 1
~b+1b+l b 2+b+i

P(X n= [b+]E n-li ,Xn~l b]El l - bl (III.D.5.3)

The final case is when X n (b+i)E n and X n = (b+i)E n. As

before

P~xn [b~]En-'xn~ = [b+iIE n

=f P(tb+]nl< [~iI y, [b+lI v < [b IEniEn y)e-ydy

00

= f P(E 1 < Y)P(E 1 ?y Yedy

"0 -(-i (bl+
"D- b~ dy - fe bdy

o 0

1 -b
b+ b2 +

P(X n [b+i]E n-lAxnjj [bl]E~ n 2 (III.D.5.4)
(b-U) (b +b+1)

The conditional expectations can now be written by

inspection.
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Case .E( n+- J n = y)

+lE ,X b+E b+l
n = b n n+l b -n+l b

X = E IX [b+l]E by

Xn b -]--En ,x 1 = [blE byl
n b n ~ b nl

X =bb~lE b+l
Xn =bl n-l, Xn+ 1 = [-- -lEn+1  -b-

Xn = [b+l]E n Xi-l= [b+lEnl b+l

Weighting these conditional expectations by the probabilities

in III.D.5.1 through III.D.5.4 yields the final result.

4
E(X nIXn=Y) = JE(Xn+l Xn=y;case i)P(case i)

i=l

b-ili b3  
___

- ] + (by)( b
(b+l)(b 2+b+l) b2+b+l

(b+l b 1
+ + (b+l)( 2b 2+b+l [b+l] [b 2+b+l ]

E(Xn+LXn=y) = + 2+l (III.D.5.5)b +b+l "

It is quite surprising that the regression of Xn+ 1 on Xn is

linear in y, considering the non-linearity of the process which

generates the X }.
n

The conditional expectation of Xn given X n+ can be

derived with equal dispatch.
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Case E (-XnLin+l Y)

"n b E~1nIn+l= b nl bJ

x = I L-k]EnIXn= [b+l]E Y

x= lb+l]E x I~~l [-]E~ b+l

=n [b+l]Enn-i xX~l= [b+l]En b+l

Using III.D.5.l through III.D.5.4 as before

4
E(X iX~ 1 Y E(Xn!Xn iy, case i) P(case i)

b ~= ) il b3 b+

- t+l 2 + (-)( 2
b [b4-1J b 2+b+1j b b 2+b4-

*+ (b+l)( b2 bl + (b+l)( 1bi b2+bsl

E(X Ix ) + 1 (III .D. 5.6)
n ~ b2 +b+l

The probability that Xnlis greater than X ncan also

be easily computed if one is careful to differentiate between

the case where b < 1 and b >1.

Case P(X n~ > Xn)

n~ b n EX ~ b n]E 2
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WW

Xn =EI [--EnXns-~ = [b+l]En0ifb1
1 if b > 1

[b+l E X b+, 1

X = [ b + l E n+ = [ b -J E n l b -1

1
Xn  [b+l]En l 'X n + 1 = [b+l]En

Thus when b < 1 we have, using III.D.5.1 through III.D.5.4

4
P(X >Xn) = [ P(X > X n Icase i)P(case i)

n+b 3  b

(- 2) + (--!-) 2
[b+l] [b 2+b+1] b-i b 2+b+i

+ (21 ( I ,)
[b+l] [b 2+b+l]

P(X2 2 , b < 1. (III.D.5.7)

A similar computation with b > 1 again using III.D.5.1

through III.D.5.4 yields

P(Xn+ n = + b, b > 1. (III.D.5.8)
(b+l)(b2 +b+l)

Thus a graph of P(Xn+ > X n ) will have a discontinuity at b = 1

when case 2 switches from a probability of zero to a probability

of one. This graph is presented as Figure III.D.5.1. The
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minimum value of one-third occurs at b = 1. The maximum value

of two-thirds occurs at b = 1+. The moving minimum model,

therefore, has a greater range of values for the P(Xn+ 1 >Xn)

than does the NEMA(l) model. However, the greater range for

the P(Xn+ > X n ) and greater range of correlations must be

balanced against the degeneracy of the model.

As was noted with the NEMA(1) model, the correlation

in non-normal models does not define the joint properties of

Xn and Xn+ I . Although the cases of b and 1 are indistinguish-

able from the viewpoint of correlation (see III.D.2.4 and

III.D.3.5), these cases will have significantly different

sample paths as indicated by III.D.5.7, III.D.5.8, and the

discussion of runs up and down in III.D.4.

Three examples of sample paths for different b values

are given in Figures III.D.5.2 through III.D.5.4. The degen-

eracy of the model is clearly present in the sample paths as

a tendency to produce runs of equal, increasing or decreasing

values, respectively. A comparison of Figures III.D.5.3 and

III.D.5.4 quickly demonstrates that while these two sample

paths have the same correlation, they produce significantly

different {X n } sequences. This is a graphic indication that

non-normal processes are not determined solely by their

correlation structure.

Figures III.D.5.5 through III.D.5.7 are the scatter

plots associated with the sample paths in Figures III.D.5.2

through III.D.5.4, respectively. Here, too, the degeneracy
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of the model is clearly present in the tendency of the

(XnXn+I) plots to lie on the line X = bXn . The slope

of this line determines whether" the runs are of equal, in-

creasing or decreasing value.

6. Conditional Exectation and P(X.+l > X n ) for
Antithetic Variables -n

Results similar to those obtained in III.D.5 can be

obtained for the moving minimum model with negative correlation.

The procedure for determining the conditional expectations and

the probability that Xn+i is greater than Xn using antithetic

variables is exactly the same as that in the previous section.

First, the probability of each of the four possible combina-

tions of Xn and Xn+l values is computed, the conditional

expectation or probability is computed for each case, and

the final weighted sum of conditional expectations or proba-

bilities is finally computed. In one instance no closed form

answer is available and numerical procedures are used.

Recall that the generation scheme when using antithetic

variables is

ob+l.
X = MIN(-E ,b+lIEn (III.D.6.1)n b n n-13' IID6

where {En , n = 0,1,...} is an iid sequence of Exponentially

distributed random variables with unit mean, (E', n =

is generated from the {E I sequence by the relationship
-E n

= -ln (l-e n) which implies that iE n  is also iid Exponen-nn

tial with unit mean, b > 0.
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b+l
Xn =L-]En+.I Then

n+b bn+1l= b+lE [b+lE
P(X n= b-- n 'Xn+l b --- Jn+l)

P b+1 < [ Lb+1]%): = (L- J~n- n-i --b n+l-

Using the standard conditioning argument produces

.b+. .b+l,
P(Xn [---]En x+l= [-]E

= bn'+b n+l

f 0P(-!?lly< (b+l]E n , --(--]E <-[b+l 1ln(1-e - y )E y)e-Ydy
0 b - n' b n+1< ln=

00

f P(E > ) P (En+ 1 < -bln [I-e - y ) e-Ydy
0

e - y /b(i- -Y]b) e-Ydy

0

(b+!) y 1'
- fe dy- f (l-e-Y)b(e- y )  dyo 0

The first integral is straightforward. In the second integral,

the change of variable u = e-y, -u = dy makes this integral

recognizable as the integral of a Beta random variable. Making

this change of variable and making the appropriate changes in

the limits of integration produces
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P (X~ (]EX 1 I [b-Il E

b 1 b b

b +i f (1-u) (U) du

- b F(i+b)T(l+b)
b~l 1

P(X I = L 1~En 'x [ b+i]E

b2  1
b221 (III.D.6.2)bl(b 2+b+i)(b2 Irb!

In the second case, X bh+1 3EadX (b+iIE'. Pro-

ceeding as before

P(X (~-E , x [bi n

= bbi3 1  [~iE +

b( -E bl]',i[+] L- yb']-

00

= f P (E 1 >-) P (E1~- -bin [-eYI ) e-dy

=f*e-y/b (i-eY)be-ydy
0

(1 y
= foo(i-e-') be- dy

0
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This is the same integral as the second integral in the first

case. Thus

b+1.P(Xn = [---E n Xn+ = nb+1 ] )

b2r (b) r(i)
b 2 (III.D.6.3)

(b +b+l) (b +1) F (b -)

Next consider the case where X = (b+l)E' and

X = b+) En Then
X l b-bEl*

P(Xn= [b+l]En X Lb+l]E

n n-'n+l b

P([b+l]E' < -+l I+-'- I E [b+l]E'n- b b- n

Pob l1 b~l b+l -

f ([b+l]E' < -b - l y ' [b' ] En~ -[b+ll] n [l-e-Y] IEn =Y)e-YdY

0n- b bYIWIn+1 < [bll~- in~ye
0

P(En < b )P(E n+
l <-bln[l-e y )e - dy

f e-Ydy- f e ey- f e-Y(-e-Y)bdy + f (l-e-Y)b(e - y )  dy
0 0 0 0

The first two integrals do not present a problem. Making the

change of variable z = 1-e-y , dz = e-Ydy makes the third inte-

gral easy. The last integral is the same as the second integral

in the first case. So
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P(X =[b+1]EA ,x = ]
n= n-i n+1 b n+1)

b2 1 i

b~l b~l (b 2+b+1) (b 2+1)rF(b+!)

P(X n= [b+1 1%_1'Xn ~ Eb+1

b2 1~~rlb F b)F (III .D. 6.4)

(b 2+b+1)(b 2+1)r(b+ )

Finally, consider the case when X n (b+1)E- and

=n~ (b+l)EA. Then

P(Xn [b+l]E'1Xl= [b+lIE)

= ~bf-IE +1 [b1E +1j

n - VWIn, n b L n+l1

f CO P ( b.-IE' < l y, -[b+l l 1ieY]I < b+1 ~eydn- - [1]E~lIn=yed

0

0(1-e y)be Ydy - f 0 (l-e- )b(e-y () dy

0 0

These integrals are the same as the third and fourth integrals

in case three. Therefore,
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P(X = [b+l]En_ , x n + = [b+l]E n )

1 2(b) r (1)
b+l (b 2 +b+l) (b 2  1 (III D6 .5)

The conditional expectations given a specific case

of the values of Xn and Xn+ 1 can be written by inspection.

Hence,

Case E(Xn+l Xn --Y)

= [b1+l1E ,b+l b+l
n b n'Xn+lllE+l; b-

_by
x= I X = n (b+l)in(1-e b+l

n b n n+ 1  nb+l]En ,

.b+l]E' X b+l] b+l
n= n-I n+l b n+lb

Xn = [b+1EA 1 X [b+l]E'• b+l.=n n' n+l n'

Combining these results with equations III.D.6.2 through

III.D.6.5 and letting

2 2 1
b2r (b) ?' (i)

= (b2 +b+l) (b 2 +l) L (b+b-)

we have
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4
E(X +llXn Y) = E(X n+llXn= y,case i)P(case i) (III.D.6.6)

-- G) -bl G (b-fl)ln (1-e l

+ G(-- + G) (b+ 1)

byl

E(X n+ Ix n= y) 2- G(b+l)(+ln~l.e b+l IID67

Similarly, we can derive the expression for E(xn IXn+l =Y)

Case E (~-Xjn+l = )

x~ b~l = b+l]Ebl

b~l ~ b nJE' bb+

X =[b+l]Ei I~~ blE ;(b+l).

Xn ( b+1IE %liXn+l [b+lJE'; (b+l).

Then using III.D.6.2 through III.D.6.5 and again letting

b2 r b 1)

G2 2 b 1(b -sb+l)(b +)~

4
E(X Ix 1 Y) I E(XnIx icase i)P(case i)

b b+ b (4( b+1
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iy

E(XnXn~l=y) = 2 - G( -- (l+lnl-e b+l]) (III.D.6.8)

The probability that X n+ is greater than Xn can be

approached in the same fashion as the conditional expecta-

tions. The second case will be reserved for individual

attention.

Case P (Xn+l >X n)

b+l nb+l _ 1

X = [b+l]E n ]Xn+1 = L- 1
n [-lXn--bIE 1 b~

X = [b+l]E' = [b+l]E n  
1nn-' Xn+l=

The second case, Xn = [-b-]E and X [b+11%, does not

allow a closed form solution. We get

P(Xn+ n = P([b+I]E' > b+ln~ >[--b- ]n)

P(-[b+llln[1-e n] > [b- IE
b n

-E En
- P(-in[l-e n] >_SY)

-E b -E

- P(f[-e n] < e n)
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-Y0- --

Hence, if we can find y0 such that (l-e b = e , then
-Y0

P(Xn+i> Xn) = l-e . The required solution can be found by

numerical means for any given value of b. A computer program

to determine y0 to an accuracy of 10
- 6 for a given value of

b and to compute P(Xn+1 > Xn ) was prepared. A graph of the

results is presented as Figure III.D.6.1. When using anti-

thetic variables, the moving minimum model has a restricted

range of possible values for P(Xn+1 > Xn). The maximum value

of approximately 0.509 occurs at about 0.30. The minimum

value of approximately 0.491 occurs at about 3.33.

This small range of values for the P(X > X n ) is

shown in the relative indistinguishability among the sample

paths displayed in Figures III.D.6.2 through III.D.6.4. Of

more interest are the scatter plots presented in Figures III.D.6.5

through III.D.6.7. In these plots the degeneracy of the moving

minimum model is clearly displayed. When Xn achieves a value

of y based on En, then Xn+ is constrained to have a value less
-X

than -ln(l-e n) In the case where equality is achieved, the

second case in the discussion in this section, the point (Xn,
-X -X

Xn+) lies on the curve e n+ e n+l = 1. This constraint

is clearly evident in the scatter plots. Thus the moving

minimum model displays a degenerate behavior for negative

correlations as well as positive.
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E. THE BETA-EXPONENTIAL MODEL

1. Introduction

A third method that can be used to generate correlated,

marginally Exponentially distributed random variables is a

special case of the Beta-Gamma model given in Lawrance and

Lewis [Ref. 18]. This model generates an Xn I sequence using

the relation

Xn = B n(q,l-q)En + B n(l-q,q)E n 1  n = 1,2,..., (III.E.l.l)

where tB n(q,l-q), n = 1,2,...} is an iid sequence of Beta

random variables, B n(l-q,q), n = 1,2,...} is an iid sequence

of Beta random variables, {En, n = 0,l,...} is an iid sequence

of Exponential random variables with unit mean, iB n(q,l-q)},

B n(l-q,q)}, and lE n I are mutually independent, and 0 < q < 1.

The density for a Beta(m,n) variable is

r (m+n) m-i n-l7(m)f(n) x (l-x) 0 < x < 1; m > 0; n > 0. (III.E.l.2)

In practice the Beta random variables can be generated from

two Gamma distributed random variables using the relationship

G(m) from Kotz and Johnson [Ref. 19], where G(K)B(m,n) =G(m)+G(n)

is a Gamma random variable with a shape parameter of K and

a scale parameter of one.

This is a special case of the Gamma model considered

in Chapter II of this thesis. It works because, as described

by Lewis [Ref. 10],in III.E.l.l the product of the B n(q,l-q)
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variable and the En variable is a Gamma (q) variable. Simi-

larly, the product of the Bn (l-q,q) and the En_1 variables is

a Gamma (l-q), independent of the Gamma (q) variable. Conse-

quently, their sum is an Exponential variable, Xn . The {X }n n

process is clearly one-dependent, as for the NEMA(l) process.

Because of a lack of a closed form solution for the

integral of the Beta density when the limits of integration

are not from zero to one, this model is the least tractable

of those considered in Chapter III of this thesis. However,

its correlation structure can be determined, an expression

for the Laplace-Stieltjes transform of a sum of r random varia-

bles can be derived, and the probability of Xn+ 1 being greater

than Xn can be simulated. An advantage of this model is that

it extends directly to moving average Gamma processes (see

Chapter II). This extension is not possible with the NEMA(1)

or the moving minimum model.

2. Correlation Structure, Positive and Negative

The correlation structure can be determined using a

standard approach. We have using III.E.I.I

XnXn+i = (Bn (ql-q)En+Bn (l-q,q)E Enl)(Bn+l (q, l-q) En+ 1

+ B n+(l-q,q)En )

B n+ 1 (q, l-q)B n (q, l-q)E n+i En +Bn+l (q, l-q) Bn (l-q,q)E n+i En_ 1

+ Bn(l-q'q)B (ql-q)E +B (l-q'q)Bn(l-q'q)EnE
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Taking expectations and using the iid nature and independence

of the {B n(q,l-q)}, {B n(l-q,q)}, and {E n } sequences yields

E(XnXn+I) = q2 + q(l-q) + 2q(l-q) + (l-q)2

Hence,

COV(Xn Xn+i) = q(l-q)

and

CORR(XnXn+ 1 ) = q(l-q), 0 < q < 1. (III.E.2.1)

As with the other linear additive models, this correlation is
1

double valued and lies in the range (0,I.

The range of possible correlations can be extended

to negative values by modifying the generation formula by

including an {En } sequence. Thus
n!

X = B (q,l-q)En + B (l-q,q)Enl, (III.E.2.2)

where all random variables and constants are as defined for

III.E.1.1 and {?', n = 0,1,... is an iid sequence having a

specified correlation with the {En I sequence. In particular,

E and E' may be an antithetic pair. The correlation of then

{X n } using II.E.2.2 can be determined in the same way as before.

Consequently,
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XX = (B (q,l-q)En +B (1-q,q)En_)

(B n+ 1 (q, l-q) En+ 1 +B Bn+ 1 (l-q,q) En )

Bn+l(q,l-q)Bn (q,l-q)En+1 E n+Bn+l(q,l-q)B n(l-q,q)E 1 E'

+ B n+ l ( l - q , q ) B n ( q , l - q ) En E n +B n+ l ( l - q , q ) B n ( l - q , q ) E E E '

Taking expectations as before

E(XnXn+l ) = q2+q(l-q)+q(l-q) LCOV(EnEn)+11+(l-q)2

= 1 + q(l-q)COV(En ,En)

Therefore,

COV(XnXn+I) = q(l-q)COV(E ,En)
n n~ln n

and

CORR(Xn,X n+) = q(i-q)CORR(En,En), 0 < q < 1. (III.E.2.3)

When E = En' the correlation is one and III.E.2.3

reduces to III.E.2.2. When En and E' are antithetic the

correlation is -0.6449 and negative correlations result. When

q is 0.50, the correlation for the iXn } sequence falls in the

(-0.16,0.25) range depending on the correlation between En

and EA.
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3. Laplace-Stieltjes Transform of a Sum

r
T r x (1131

where {X.} are defined by III.E.1.1. Then

T r .

B B1 (q,1-q)E 1+B 1 (1-q,q)E 0 +B 2 (q,1-q)E 2 +B 2 (1-q,q)E 1

+ ... + B r(q,l-q)E r+B r(l-q~q)E r-

r r r

+ .[B r1(a.1-q)+B r(1-q,q)]Er-

Let ~T = E(e r)* Then using the iid nature and independence

of B n(q,l-q)}, (B r(1-q,q}j, and {E n

Tr r

-s[B 1(q,l-q)E+B 2(-~]

T .. E(e Br al)Br r l~)) -
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I T (s) [!--+s ITS [T BE (S)]
r

1 r-i

= BE

where

-s[B i ( q , l - q ) + B i  ( l - q , q ) ] E i l
1PBE (s) = E (e).

The Laplace transform of the sum of two Beta random variables

is a confluent hypergeometric function. Its form is too compli-

cated to be of significant value in deriving the analytic

behavior of the Beta-Exponential model.

4. Zmpirical P(Xn+ 1 >Xn

Because of the presence of the Beta random variables,

the probability of Xn+1 being greater can not be analytically

determined with a reasonable amount of effort. In an attempt

to establish a range for this probability, a simulation was

used. In order to achieve a precision of at least 0.001,

sixty-eight thousand comparisons were generated for each of

ten random number seeds. The Beta random variables were

generated using the Kotz and Johnson (Ref. 321 relation

B(in) = G(m) explained in III.E.l. The ExponentialB~m~) =G(m)+G(n)

sequences were generated by a call to a standard generator of

Exponentials. When the simulation was run for nineteen values

of q from 0.05 to 0.95 in steps of 0.05, the P(Xn+ 1 > Xn) was

0.500 for all values of q.
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Although the empirical probability that Xn+1 is

greater than Xn is constant at a value of 0.500, reminiscent

of the autoregressive model of Chapter II.B.6, the distribu-

tion of Xn+ 1 -X n is not symmetric and no simple proof for

this situation has been found.

The low serial correlation and the apparent invaria-

bility of the P(Xn+ > X n ) makes the use of sample paths and

scatter plots of little value. Samples are provided in Figures

III.E.4.1 through III.E.4.12.
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IV. PRELIMINARY DATA ANALYSIS

A. INTRODUCTION

During the period 1955 through 1969 a weather ship sta-

tioned in the Gulf of Alaska (500N,1450 W) collected, among

other data, wind speed data at three hour intervals [Ref. 33].

The existence of the wind speed data was brought to Professor

Lewis' attention when a student in Oceanography asked him to

provide a model suitable for simulating wind velocity data.

The simulated data was required as input to models of ocean

temperature mixing. A copy of fifteen years of wind speed

data was obtained for this thesis. The intent was to do a

preliminary data analysis and then determine whether any of

the models discussed in this thesis could provide an adequate

representation of this data and, hence, a method for gener-

ating wind velocity sample paths for oceanography simulation.

Initially, the models discussed here are strong a priori

candidates for data of this nature. Intuitively, there is a

strong feeling that an assumption of independence among the

data is unwarranted. Hence, autoregressive and moving aver-

age models which are designed to reflect the behavior of

correlated data should be considered likely candidates. The

non-negative nature of the data mitigates against the use of

classical time series anlaysis which is based on the assump-

tion of a normal distribution, and hence negative values, for

the series. The existence of zeros in the data tends to make
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the use of transformations, like taking the log, somewhat

less appealing than otherwise. These considerations indi-

cate that the models discussed in this thesis should be

considered as likely candidates for modeling the wind speed

data.

B. ANALYSIS OF THE RAW DATA

There were 43,800 data points available for analysis,

2920 for each of the fifteen years between 1955 and 1969

inclusive (the extra data for leap years was discarded).

Since this size data base made it inconvenient, if not

impossible, to manipulate by hand, each year's data was

plotted as a means to promote familiarity with the data.

The plot of each year's data and the plot of the data averaged

over all fifteen years (e.g., all data taken at 0300 on 1

January of each year were averaged) are presented in Figures

IV.B.la through IV.B.lp. Several characteristics can be

observed from these figures. First, and perhaps most obvious,

is the expected yearly cycle of the data. Values at the

beginning and end of the year tend to be higher than those

in the middle. Second, the data is discretized to a large

extent. There exist obvious horizontal lines of equal valued

data. A sort and plot of the entire data set reveals that

the data consists of values that are integral multiples of

1.03 with a few values between these multiples. Next, on

some occasions a series of high values will all be equal,
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indicating that some clipping may have occurred (see Figure

IV.B.la vicinity of 2575 and 2625, Figure IV.B.lb vicinity of

400 and 525, etc.). These last two characteristics indicate

that statistical properties which are sensitive to the be-

havior of the "tail" of a distribution may be affected. The

final observation about the data is that there are apparently

intervals when the data was not actually collected. These

instances appear as reasonably long strings of values which

have a strong linear appearance (as though the values were

produced by linearly interpolating between two boundary

values). See Figures IV.B.lh (vicinity 2400), IV.B.lj

(vicinity 2250), IV.B.lk (vicinity 50 and 1750), and IV.B.Im

(vicinity 150 and 2725).

The cyclical nature of the data is somewhat more apparent

in the plot of the data averaged over the fifteen years (see

Figure IV.B.lp). Additional evidence of this yearly cycle

is presented in Figure IV.B.2. This figure presents twelve

box plots, one for each month. The data values plotted are

the monthly average wind speed for each of the fifteen years.

The interquartile range and extreme values are shown in a

standard fashion. As an adjunct to this analysis of the

year cycle, the coefficient of variation for the monthly

averages was computed. The coefficient of variation was

essentially constant. See Table IV.B.l. This will have

an impact on the choice of the type of model used to model

this data.
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This yearly cycle is also shown in the periodogram and the

log of the periodogram of the data (averaged over 15 years) as

presented in Figures IV.B.3 and IV.B.4, respectively. The

periodogram is computed from the data in the following way.
N

Let {Xna, n = 1,2,...,N} be the raw data and let X = X be

2i=lthe mean of the X n } sequence and Xbe the variance. Let the

{Y n n = 1,2,...,N} be formed from the {Xn I sequence using the

relation

Y = Xn - X, (IV.B.l)

where N = 2920 is an even number. The Fourier transform of the

{Yn1 sequence will have both a real and complex component and
wlhaeN {n...N

will have elements. Let {Z I n = 1,2,... t} be the Fourier

transform of the {Y n sequence and let ZjR and ZjI be the real

and imaginary components of the jth element of {Z n, respectively.
n

thLet P. be the j element of the periodogram. Then

P. = (Z2 + z 2 ,2TrNc2  j (IV.B.2)

defines the periodogram of the {X n } sequence.

The periodogram dramatically presents the yearly cycle

(j = 1) as the dominant effect (P1 > 150), although there is

some indication of a six month cycle (j = 2, P2  9.0). Some-

what surprising is the apparent lack of any strong time of day

effect. The log periodogram reinforces the dominant role of

the yearly cycle and indicates that six month and six and

twelve hour cycles (j = 2, j = 1460, j = 2920 respectively)

may be important.
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The correlation structure of the data is presented in Table

IV.B.2. The column indicated as "15 Yr Avg" is the average of

the values of the fifteen years. The column indicated as "15

Yr SD" provides the standard deviation of the values about

their mean. It is not the standard deviation of the average.

This latter quantity can be obtained by dividing by the square

root of 15. The last column provides the correlation structure

of the average data. The estimated correlations remain artifi-

cially high in this case because averaging reduces the varia-

bility of the data about the year cycle which intensifies the

artificial increase in correlation due to the year cycle. The

correlation structure revealed in Table IV.B.2 for individual

years closely resembles that of an AR(l) model, in that the

k-step correlation is approximately the one-step correlation

raised to the kth power. The correlations in the table have

a tendency to be slightly higher than the theoretical, calcu-

lated value, but the agreement is reasonably good for about

ten steps. Beyond that point the correlations are kept up by

the year cycle, which is not as prominent in the yearly data

as it is in the averaged data. If nothing else the disparity

between the two correlations is evidence of the existence of

a trend in the data.

At this point sufficient information is available to de-

termine some characteristics of the general form of the model

for representing the wind speed data. As noted above, the

correlation structure is similar to that of an AR(l) process
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with positive correlation although nuances may appear as the

year cycle is removed. Hence, an AR(l) model should be used

as a starting point for the construction of the model for

wind speed.

In addition, the cyclic nature of the process must be

modeled. This can be done with either an additive or multi-

plicative model. An additive model might have a structure as

follows.

Xn = ln + n' (IV.B.3)

where {Xn } is the time series under consideration, Pn is a

deterministic function of n, and the innovative sequence

{n } Iis a stationary sequence of random variables. In the

usual model this stationarity implies that the marginal vari-

2
ance a is constant and the correlations only depend on the

lag (i.e., P(XnXn+k) = o(k)). Using the same definitions

the multiplicative model would have the form

Xn = PnFn' (IV.B.4)

where again the en I sequence is stationary and independent

of pn . A characteristic of the additive model is that the

coefficient of variation is a function of the value of n"

The multiplicative model produces a constant coefficient of

variation. Since the data has a coefficient of variation that
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is essentially constant, in the crude monthly analysis, the

multiplicative model is preferred.

We have yet to determine the exact form of the mean, n'

in equation IV.B.4. However, we do know that this mean will

have a yearly cyclic nature. We also have yet to determine

the general structural nature of the innovative process c

These subjects are addressed in the following sections.

C. THE FORM OF THE MEAN; DETRENDING THE DATA

Two basic models were considered to represent the mean.

The first was a single harmonic sinusoidal model

= a + b1 sin(=0) + b cos(2 9,n a + k cos(2 920 + )

(IV.C.I)

where k = 2+ b 2 )1/2 and a = tan- - 
1  The second was

an exponential sine with one harmonic

2Trn 27rn ks)a+b1 sin( 29 2-)+b2cos(!'-) a kcos( 2920n )
"n = e ee (IV.C.2)

The second model has the theoretical advantage that it can

not be negative and will represent higher harmonics in a com-

pact form. The sinusoidal model may or may not be negative

depending on the values for a, b1 , and b2 . In spite of the

theoretical preference for the exponential sin%, both models

were used initially to see if either produced significantly
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better results. Note that if k is small the models are

hardly distinguishable. If k is large, the exponential sin

will clip at low values and is a cycle that would have many

harmonics in its Fourier transform.

The values for the constants in equation IV.C.l were

determined in a straightforward procedure using the least-

squares regression procedure of MINITAB and the data averaged

over 15 years. These estimates could also have been obtained

from the periodogram at w1 = 27rN, I(w 1 ) {(b) 2 + (b2) 2,

using the relations

N Xi  _
a = = (IV.C.3)

N 27i
bI = 2 Z Xi sin(--N-)/N = imaginary component (IV.C.4)

i=l of periodogram at
27T/N;

^ N 21Ti
b = 2 X X. cos( -- I-/N = real component of

i=l periodogram at 27/N.

22
SThe variance of these estimates is 2a E/N if the Xi's are

independent, but since this is clearly not the case here,

estimates of the variance of the estimates cannot be obtained

directly. The results of the estimation are contained in

column 1 of Table IV.C.l.

Similar results were obtained for the constants in IV.C.2

by a slightly more complicated procedure. In order to use a
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Parameter Estimates for Models of the Mean Value

Fuctonofth WndVeoctyData

1 hnmnc 1haxonc 2hamoni 2hazr~nic baz~onic
PARMETR ine expsie sne xpsine exp sine

aa 1020 2.309 10.230 2.307 2.307

b 016 -0.011 -0.175 -0.011 -0.011

b22.560 0.260 2.566 0.260 0.260

b3  - - -0.593 -0.057 -0.057

b 4 -0.397 -0.054 -0.054

b 5  --- - 0.014

b 6  ---- 0.001

b 7 -0.010
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least squares approach, a linear relationship must be estab-

lished for the mean value of the process. Taking logs is

the obvious technique to employ, but this introduces a compli-

cation. Taking logs and expectation of IV.C.2 we have

E(ln X) = ln jn + E(ln cn)

21Tn 21Tna + b1 sin( ) + b2 Cos(20) + c.

For example, if the {en} sequence is marginally distributed

as a unit Gamma variate, G(l,k), then c = *(k), where 4(k)

is the digamma function (derivative of ln :(k)). See Cox and

Lewis (Ref. 29], pages 24-27. The value of the constant c

will be combined with the constant a in the least squares

estimation using the ln Xn 's, giving the constant a' = a+c.

To estimate a+c without making Gamma assumptions for the

innovative process, the Xn's are divided by

= b I sin( 2Trn) + 2 cos(_j )

to give Xn . The data is then divided by the average of the

s which estimate eac) The result of this is a series

with mean value (within statistical fluctuation) of 1 if the

model for the cycle is correct. The values obtained are listed

in column 2 of TAble IV.C.l. The results of these estimates

are in Figure IV.C.l. In this figure the average data
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is plotted against the value computed for w n using both of

the models under consideration.

When using a multiplicative model, the residuals are

formed by dividing the raw data by the mean. The results of

this procedure are presented in Figures IV.C.2a through IV.C.2p

using the exponential sine model for the mean. The results

are not significantly different using the sinusoidal model

of the means. Hence, only the results for the average data

are presented for this case in Figure IV.C.3.

The log periodogram of the average data detrended using

the sinusoidal model for the mean is shown in Figure IV.C.4.

A five-step moving average of this log periodogram is pre-

sented in Figure IV.C.5. The detrending has clearly reduced

the importance of the yearly cycle, but still shows some evi-

dence of a six month cycle and six and twelve hour cycles.

Similar information is provided for the average data detrended

using the exponential sine model for the mean in Figures IV.C.6

and IV.C.7. This model does not reduce the effect of the

yearly cycle as much as the sinusoidal model for the mean,

but still shows the six month cycle as being important and

some evidence of six and twelve hour cycles.

Since the exponential sine has the theoretical advantage

of being non-negative and both models of the mean produce

similar results when applied to the data, the exponential

sine is selected as the model of choice and the analysis is

continued using it exclusively.
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D. RESIDUAL PROCESS PROBABILITY STRUCTURE

Having removed the dominant seasonal effect from the

data, it is possible to investigate the structure of the

residual process _ n in the model

Xn = n En (IV.D.l)

The two facets of the probability structure of the stationary

process { n} which were addressed in Chapter II were the

marginal distribution and the correlation structure. The

residuals produced by dividing the raw data by the apprcpriate

value of the mean were supplied to HISTF, a histogram and box

plot routine developed at the Naval Postgraduate School.

Histograms for each year and the entire data set were pro-

duced. These histograms are presented in Figures IV.D.la

through IV.D.lp. The shape of the histograms is consistent

over the years and indicates that a Gamma distribution is

appropriate for modeling the innovative factors. The param-

eter k can be estimated as the reciprocal of the coefficient

-of variation squared (see equation II.B.4.16). The estimated

value of k for each year is given in Table IV.D.l.

A careful examination of the statistics associated with

the histogram will reveal that the values for the skewness

and kurtosis are low compared to the theoretical values for

the Gamma distribution, namely 2/V and 6/k, respectively.

However, this is not unexpected when one recalls the

282
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Table IV.D.l.

Moment Estimate of the Gamma Shape Parameter by Year

Year Esti.mate of k

1955 3.96

1956 4.16

1957 4.38

1958 3.68

1959 3.65

1960 4.45

1961 3.87

1962 3.87

1963 3.86

1964 4.49

1965 4.32

1966 4.04

1967 5.08

1968 4.24

1969 5.41
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discretization and clipping that has apparently occurred

while the data was collected and processed. As a rough

check on the extent of the clipping required to produce

values for the kurtosis and skewness similar to those for the

data the following procedure was examined. A sample of 2920

values for a Gamma distribution were produced with mean 1 and

shape parameter k = 4.0 by a call to the NPS random number

generator LLRANDOMII(SGAIIA). A histogram of these values was

produced sequentially for the following cases. The data was

clipped so that all values over four were set equal to four,

all values over three were set equal to three, and finally the

highest ten percent of the data was set equal to the value of

the 2890 sample order statistic. The first four central moments

were estimated under each of the conditions. The results are

presented in Table IV.D.2. The results indicate that a

clipping of the top ten percent of the data will yield results

for skewness and kurtosis comparable with those observed in

the data.

TABLE IV.D.2

Mean SD CV Skewness Kurtosis

Gamma 0.986 0.504 0.511 1.128 2.114

Cut at 4.0 0.986 0.504 0.511 1.128 2.114

Cut at 3.0 0.984 0.498 0.506 0.994 1.165

10% Cut 0.982 0.489 0.498 0.861 0.516
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The conclusion that the innovative factors can be modeled

as random variables with Gamma marginals when combined with

the conclusions from IV.B specify the general form of the

model to be possibly that of the GLAR(l) process, although

further detrending might indicate that the more general

GLARMA(p,g) model of Chapter II might have to be used.

Since the estimated correlations o(k) are affected by

remaining trend (as seen in Table IV.D.Y), it is best to

examine the structure of the dependency process via the

periodogram.

Figures IV.D.2 through IV.D.5 show the periodogram and

log periodogram for the 1955 and 1969 data detrended by the

single, yearly harmonic exponential sine (see equation IV.C.2).

Superimposed over these plots is the spectral density and log

spectral density of a theoretical AR(l) process with correla-

tion equal to 0.849 (see Table IV.D.3). This spectral density

is also the spectral density of the GLAR(1) process. We have

2
f(w) 2(1-p.) 0 < W < 7, (IV.D.2)

1 + P2_ 2 cos(w)

with p = 0.849.

All of these plots show that the detrending has reduced

the importance of the yearly cycle and that a six month cycle

has now become the dominant factor. The theoretical GLAR(l)

spectral density fits well for the periodogram after the

point representing the six month cycle. The six month cycle

301
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has now become the dominant factor. Lacking in these plots is

an indication of a time of day effect. The appearance of a

time of day effect is limited to those plots which use the

average data (see IV.C.4 through IV.C.7). Figures IV.C.4

through IV.C.7 and IV.D.2 thorugh IV.D.7 indicate that a

further refinement in the model of the mean to include a six

month cycle may be helpful. This topic is covered in the

next section.

The correlation structure of the detrended data is depicted

in Table IV.D.3 and Figures IV.D.6a through IV.D.6p and IV.D.7.

Since the one-harmonic year cycle in the data has been reduced,

the correlation of the average data in Table IV.D.3 more closely

reflects that of the average of the fifteen yearly correlograms.

The higher values for the correlations in the average data and

its failure to fall below 0.20 may be indications that a trend

still exists in the data (the six month trend) which is arti-

ficially inflating these values. This may be a further indi-

cation of the desirability of including further cycles in

the model of the mean. The slight increases in the correlations

for lags of 8, 16, and 24 in the average correlogram, Figure

IV.D.6p, and the correlogram for the average data, Figure

IV.D.7, may indicate a small time of day effect.

E. REFINING THE FORM OF THE MEAN; A FURTHER DETRENDING

Since several plots in the previous section indicated that a

six month cycle had become the dominant factor since the removal

of the one-harmonic year cycle, a further refinement for the model

307



LIU-
Lu.

on
ILLJN

u

_jz
LLJ ()0

Z CCcli-
Iu
z C

ao-a

k ~LJ Lu

cr~

CE:

=-i C3
CD m

LLJ L0
?~~ ~u___________

UO I B~O

308



C2

0
-)LL 0

IT U-Q

L) IJ O-)-
CC 0

L) CM
~LU

c i 0

Z: ccGI-u-
M z C:)H

>.T a--
0L

C3

ci C

ja-.

:3J-
0

C3C

cr r. ____wCC

CCT~ rLLJ__ _ _ _ _ _ _

300



03

L-

cc 0

cc C)

zz
L" L

wee

NOI 1UT .Ur4
~a:

c3c

yU



000
U-) u

u-

LLJ r

-j

z
-I-

LLJ Ol H
0C

X0

'-4
ZD~~ LL L

J cc 0

c-o

L ILJ Q

E.
C) C

Col 1 9"0_0 ._ __h_ _ __0, 00

rm a:3H0

311



LnumLLJ
1CDI 0

LL.

U-JC

LLU

:> 00

-- J

cr C

z

Mi CD

CL 0

:: ~LU __ _ __ _ __ _ _

cz~

Q Ti C)
0

00 90 00 LiO 0.
NrI CD~UO

M'

31



cP CI-(9 L

CC 0

cDLU

U) 0

Z- cl:

X0 0

>. cc

CDD

C-,3

-)

QLE- 0

L ctLLo

C 0  3

3133



T0

C0

Lr) L.)

LL)~-

JL) . ('I>

rnLU Q
uC

cr-4

LLI

0 o0

AJ

Lu' u

C2I

-J L

CC

C.C)
f 081 09 0 oftQ 0 0 0-d

314



0

(L)

tLLU

-4,

uC
L&J
z

z -

a0

-4-

-Jo--

Li~

00

tO O' 09a 90 OhI 0~ 020 0o@c

NOI31U0

315



cnJ

LOU
LL C)
LL.

LLJ C

GIJ -J

c 00

zz.

L9LU
z~ 02 9 Of Z

NO- C3U~U O

3163

.0'



c'J

J)L
~u
LU'L

zI>~z

CC

Z cc
z -i

0 0

CL $4

ct .0

0

0 L

cr LU

Cr- Li



(-0 0

LL

L N

~LLJ 
z>-

co o

z -a

$-4cc -J L c0
CC

__j. a-_

cLLQ9~o

C31

ZI



S ~ -

LL 0.
L)'J

am-3
U--v

CC C

cc,-
LL0

u0

-

Li>-~
CDo

-

C

ul0
LLJ co

cr L

co C0
Z0

00 1 09 0 09 0 Ob.0 02. 00
NO Id136UO3

*4

319



M

Li C

-
LL-l

0-) CC

CCD

U-1I

jr -(9

LU
7Z 7,0

ND~~C IDU~UO
ao- I.-

X :20

LU cc t



()0
00 (D0

cGII
M7 LL.

O-)-
LLI

~U C

z
-i.--.C

Z CC
z
Lii

M z C:)

0 04

-r CC

* 0 cr

-LJ

CE ~LLJ _ _ _ _ _ _ _ _ _

E D F---_ _ _ _ _ _ _ _ _ _ _

00 1 09.10 09 0 0 h 0 02 0

44

321



-. n

CC%

EDz

o 0o

QL -J

-LLJ

>- a-

cc~.. __cc

03
M=

_ __ _

3223



-CU

cc,
c LL> C)

LL. -

~LLU~i

c

Lii >

z

cE

IAC- Cc_ _ __ _ 0

00t~~~~~~ 091 9. O. 0O od
NOI.IU1JYr-

Ln z

0 32iLL E)C
a- $4



cn

CU.1 4$

4

LU 0 "4

GFZ
CLLJU CD 0r

$4 0
cmQ c 4.) 1

cE-J Lu

LL) Z ~Co Z (

_~j O S4 a

0~* = 44
0c

cc ccV_ _u_ _)c4j -

u~

ry-H 1- -4H
*-4 rO 4-4

cc co

aLJz __________

LLJ )C

000 09*0 Ob 0 0a, 0 of~~

324



of the mean was considered. In this refinement, the sinu-

soidal model for the mean was reintroduced to the analysis

to see if the addition of the second cycle would allow this

model to outperform the exponential sine. With the two

cycles included the sinusoidal model becomes

a 2rn 2Trn 2Trn
4n  =a + b I sin 29-o) + b 2 (--) + b3 sin (1-60)

+ b 4 cos ( 2Tn) (IV.E.1)

The exponential sine becomes

a+blsin 27rn +b2( ) 27rn ,2
vn = e
n =(IV.E.2)

Parameters for these models were determined following the

procedures in IV.C and the estimated values are listed in

Table IV.C.l. The plots of the two resulting values for the

mean are presented in Figure IV.E.l. Since the two curves

are nearly identical and the exponential sine is preferred

on a theoretical basis, the sinusoidal model was not further

considered.

Figures IV.E.2 through IV.E.5 show the periodogram and

log periodogram for 1955 and 1969 after detrending with the

two harmonic exponential sine. The value for an AR(1) proc-

ess is superimposed as before with a correlation of 0.794
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(see equation IV.D.2). All of these plots show the yearly

and six month cycles much reduced in importance. They also

show some weak time-of-day effects, but these are more

noticeable in the 1955 data.

The correlation structure of the data is shown in Table

IV.E.l. The average data correlations are now lower than

those of the average of the fifteen yearly correlations.

They also drop more quickly than that of the average of the

fifteen yearly correlations and eventually go below zero.

This is another indication that the trend in the average data

has been largely removed. Figures IV.E.6 and IV.E.7 show the

periodogram and log periodogram for the averaged data. As

has been noted previously, the time of day effects are more

noticeable in the averaged data than they are in the data

for a single year. However, the effects are prominent enough

to warrent further consideration. This subject will be ad-

dressed in Section IV.G.

F. RESIDUAL ANALYSIS

Since a first-order autoregressive model appears to be a

good fit to the innovation process fen , we need to examine

this hypothesis more clearly. If we were dealing with a

linear AR(l) model for the residual process

n n-l (IV.F.)

where Yn is a sequence of iid random variables, then computing
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= Y (IV.F.2)

as an estimate of Yn would be of interest. The estimated

{Yn } should have a flat spectrum. Using the Gamma generation

scheme of equation II.A.5 (i.e., En = BnPn-1 + CnGn) reduces

the value of differencing since the coefficients in the genera-

tion scheme, Bn and Cn, are continuous random variables and

not constants. However, this differencing procedure may pro-

duce some insight to the data. Hence, the differences

Yn = en - P(l)Cn-l (IV.F.3)

were produced, where p is a one-step (lag one) correlation

for the two harmonic detrended data and e n and En-1 are two

harmonic detrended data values.

Since the data has been detrended and the differencing

serves to remove the dependence from the data, one would expect

the periodogram of the detrended, difference data to be flat.

The periodogram and log periodogram for the detrended, dif-

ferenced data are presented in Figures IV.F.l and IV.F.2.

With the exception of a relatively strong indication of a

six and twelve hour cycle, the periodogram is, in fact,

reasonably flat. The log periodogram indicates the same

characteristics.

The correlogram for the detrended, differenced data is Figure

IV.F.3. There are two key points. First, all the correlations
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are relatively low, indicating that the dependence structure

has been largely removed. Second, the alternation of the

sign of the correlations is an indication that there still

exists an important cyclic component in the data, in particu-

lar an alternation of twelve, or six hours. Differencing

two sine functions (i.e., sin( -- ) - sin(2 7(n+l)) will pro-N N

duce a cycle with period of two if they have non-zero ampli-

tude. Therefore, the alternation of the correlations is

evidence that an important cycle still remains in the data.

G. A FURTHER REFINEMENT OF THE MEAN; THE LAST DETRENDING

Since the evidence of the preceding two sections suggests

that there is still one important cycle in the data, a further

refinement of the model for the mean was undertaken. The

evidence suggests that there may be six and twelve hour cycles

in the data. These cycles may be the result of the passage

of pressure fronts over the data collection location.

Only the exponential sine model for the mean was con-

sidered in the final detrending. The final model for the mean

was

, 27.n 2 . 2n ,27tn .2n,
n EXP[a+blsin( 2 0 ) + b cos( 29--0- + b sin(I27n) + bc1s6(i-4

+ b4 sin( -4) +b 6cos j) + bCos(-] (IV.G.l)

One should note that the sine function with a period of two

is omitted from the model. This is because the sin (n7) is
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identically zero if n is an integer. The implication of this

is that we essentially lose the ability to determine the

phase shift for the cycle with period two. This may mean

that our attempt to remove the six hour cycle will not be

completely successful. Parameters for the model in IV.G.l

were produced by the same techniques used previously (see

Section IV.C and Table IV.C.l).

Figures IV.G.l and IV.G.2 show the periodogram and log

periodogram for 1955 data after detrending using the model

of the mean in IV.G.l (see also Table IV.C.l). With the

exception of the six hour cycle, the periodogram compares

favorably with the theoretical AR(l) periodogram superimposed

over it. The log periodogram shows the same characteristics.

Similar information is presented for 1969 in Figures IV.G.3

and IV.G.4. The strength of the six hour cycle is reduced

for this year. Finally, the periodogram and log periodogram

for the averaged data are presented in Figures IV.G.5 and

IV.G.6. The comparison of the averaged data with a theoreti-

cal AR(l) process is considered acceptable.

Note too that in Table IV.G.l the 15 year average

correlation is commensurate with the correlation computed

from the averaged data. Thus the discrepancy between these

quantities noted in Table IV.B.2 has been explained.

It may be worth noting in passing that a surprising result

of this analysis is the failure to detect any multiple-day

cycles. Apparently some meteorologists believe that there
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is a six-day weather-cycle driven by the passage of storms.

This analysis has failed to detect any such cycle. It may

be that the high correlation among the data and the expecta-

tion that the actual storm cycle will be reflected in the

data has created an impression that these cycles exist in

the data when, in fact, they do not. This confusion of

quasi-cycles produced by high positive correlation and com-

pletely deterministic cycles is common in applied science.

Figure IV.G.7 shows a sample path for a GLAR(l) process with

high correlation, p(l) = 0.85. Although it may be tempting

to conclude that this process is showing evidence of a

cyclic nature, there is no deterministic cycle in the data

shown. The behavior displayed in this figure is typical of

an autoregressive process with high correlation, and no cycle.

A table of correlations for the 4 harmonic detrended

data is provided in Table IV.G.l. Its characteristics are

much the same as those of the two harmonic detrended data.

H. SUMMARY

The model suggested for the representation of the wind

speed data now has the following form. The basic structure

is that of a multiplicative model, that is it has the

form

Xn = nan , n = 1,2 (IV.H.l)
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The {X n } sequence represents the raw wind speed data. The

Un is a deterministic function of n. The innovative terms
{en } are modeled by a GLAR(l) process.

The GLAR(l) process was discussed and analyzed in Section

II.B. The generation scheme presented in equation II.B.l.l

is repeated here (with ei replacing Xi).

en = Anen-l + BnGn" (IV.H.2)

The innovative sequence { n} is itself correlated. The

parameters of the GLAR(l) process control the correlation

structure of the model. (See Section II.B.2, in particular

equation II.B.2.1.)

The mean i n has been modeled as a four harmonic exponen-

tial sine function,

= EXPfa+bsin(2o)+b2cos(f97)+b 3sin(AA)+b4cos(A )

+b sin(.! )+b cos( n- - b~ o
5  4~ 6t 4T7(Iv.H.3)

The four harmonics represented are a yearly cycle (coeffi-

cients b1 and b2 ), a six month cycle (coefficients b3 and

b 4 ) , a twelve hour cycle (coefficients b5 and b6 ) and a six

hour cycle (coefficient b7). The values for these parameters

and the "a" parameter are found in Table IV.C.l.

The innovative terms are modeled by the GLAR(l) process.

The parameter values for k and q were determined to be 2.843
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and 0.727, respectively, by using the numerical approximation

to the maximum likelihood method described in Section IZ.B.4.

The data used for this evaluation were the residuals produced

by the single harmonic exponential sine mode.. of the mean.

The parameters were not recomputed for the two or four har-

monic exponential sine model because of time limitations.

These parameter values give a correlation of 0.744. This

is somewhat less than the average correlation of 0.826 for

the single harmonic residuals (see Table IV.E.l). However,

this deviation is not considered serious. This is because

the estimates produced by the four harmonic detrended data

may differ from those produced by the two harmonic data and

the correlations for the one harmonic data are modified by

the presence of the six month, twelve hour and six hour cycles.

The simulation study of Section II.E indicated that for

large k and high correlation the standard deviation of the

maximum likelihood estimates was about half that for the

moment estimates (see Figure II.E.l and Table II.E.2). In

addition, neither estimation procedure had any apparent bias.

For these reasons the maximum likelihood estimates are pre-

ferred over the moment estimates in this case unless com-

puter time is limited.
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